TAMT: Temporal-Aware Model Tuning for Cross-Domain
Few-Shot Action Recognition

Supplementary Material

In the supplementary materials, we first explore the effect
of hyper-parameters on the Hierarchical Temporal Tuning
Network (HTTN), mainly including the number L and pa-
rameters v & [ for TAA blocks as well as the number of
group G for ELSTC. Furthermore, to fully evaluate the gener-
alization of TAMT, we set up a setting called generalization
across datasets, and finally show its performance of vary-
ing shots and FSAR tasks. Lastly, we conduct visualization
analyses to further validate the effectiveness of our TAMT.

1. Effect of Hyper-parameters on HTTN

Number L and Parameters v & $ in TAA block. In
Tab. S1 and Tab. S2, we explore the optimal TAA trans-
former block number L and the parameter sharing strategy
for parameters v and /5. Initially, L varies from O to 4,
among which an L value of 0 implies a configuration with-
out any adapters. Relative to this baseline (L = 0), the
introduction of adapters yields a positive impact, enhancing
performance by over 1.96% with only a minimal increase
in training cost. Optimal performance is observed when L
is set to 2 or 3. For higher efficiency and considering the
performance-consumption balance, L = 2 is chosen as the
default configuration. For the parameters v and § in TAA
blocks, they are partially shared. Only the WI and Wf
in Eqn. (2) & Eqn. (3) are shared, resulting in an average
gain of 0.48% across five datasets while reducing learnable
parameters by 10%, as shown in Tab. S2.

Number of Group G for ELSTC. To evaluate the effect
of different group numbers G in ELSTC, we consider val-
ues ranging from 1 to 8 for a sequential feature of length
T = 8. We observe both performance and computational
overhead (including feature dimension, number of parame-
ters, GFLOPs, and inference latency), as shown in Tab. S3.
The results show that grouping features (G > 1) effectively
reduces the computational overhead compared to the original
setting (G = 1). Moreover, increasing G further alleviates
the overhead. Notably, optimal performance is achieved at
G = 4, This improvement likely results from a balance be-
tween more effective optimization (compared with G = 1, 2)
and better preservation of temporal interactions within each
group (in contrast to G = 8).

2. Generalization Verification

To further validate the generalization of TAMT, we first con-
duct experiments under a setting of generalization across
datasets. Furthermore, we validate the effect of our TAMT

L SSV2  Diving UCF Average Memory
0 53.41 42.87 94.97 63.58 1.2G
1 57.48 43.52 95.61 65.54 +0.0G
2 59.18 45.18 95.92 66.76 +0.7G
3 59.86 44.75 95.70 66.77 +1.8G
4 59.67 4422 94.87 66.25 +2.9G

Table S1. Effect of the hyper-parameter L on HTTN, and the
accuracy (%) of 5-way 5-shot is reported. Memory: GPU memory
for training.

P |HMDB SSV2 Diving UCF RareAct | Average
S|{28M| 74.14 59.18 45.18 9592 67.44 68.37
U|3.1IM| 7394 5834 44.12 9558 6747 67.89

Table S2. Comparison (%) of the shared parameters v& [ in WI&B .

S: v& 3 are Shared, U: v&f are not Shared. P: Parameters.

on more shot experiments, and finally demonstrate the gen-
eralization ability of our proposed HTTN in FSAR tasks.
Generalization Across Datasets. Here, we compare with
the counterpart CDFSL-V on a challenging setting, where we
pre-train the models on the K-400 dataset and fine-tune the
models on on UCF or HMDB. Then, the fine-tuned models
are directly adopted to four downstream datasets without
any tuning. As shown in Tab. S4, our TAMT outperforms
CDFSL-V by an average of 13.83% and 15.26% on four
test datasets [2, 0, 8, 15], respectively. These results clearly
demonstrate that our method can be well generalized across
different datasets.

Results of Different Training Shots. To further assess the
generalization of our TAMT method, we compare our TAMT
on various 5-way K-shot (K = 1,5, 20) settings, by using
ViT-S with 112 x 112 input resolution. The performance
of transferring from source dataset K-100 [20] to five target
datasets [2, 6, 8, 10, 15] is presented in Tab. S5, in which
the average Top-2 best performances are marked by red
and blue, respectively. As shown in Tab. S5, our TAMT
exhibits outstanding performance compared to the prime
counterpart CDFSL-V [14] under 1-shot, 5-shot and 20-
shot settings with a significant margin on average accuracy
over 24.08%, 31.15% and 34.13%. Particularly, for the
5-way 1-shot setting, our TAMT is the only approach to
achieve a significative performance (namely, above 20%
for 5-way recognition) on HMDB, SSV2, Diving and UCF



gg’;‘f&fﬁg G Dim Params. GFLOPs Latency SSv2 Diving UCF : Avg.
X[ L _20K 1M 105G 106ms | 5906 4376 9532 | 6605

2 65K 25M 42G 5.5ms 58.85 43.95 95.15 | 6598

v 4 4K 1.6M 2.2G 3.7ms 59.18 45.18 9592 |, 66.76

8 1K 1.0M 2.1G 2.8ms 58.09 44.45 9524 ' 6592

Table S3. Effect of the hyper-parameter G on HTTN, where 5-way 5-shot accuracy (%) and computation overhead are reported. Dim.:
Dimension of M». Params.: Training parameters. GFLOPs: GFLOPs of ELSTC. Latency: Inference latency of ELSTC.

Method Pre-trained Dataset — Tuned Dataset — Te§t .Dataset
HMDB SSv2 Diving UCF Average
CDFSL-V [14] K400 — HMDB — - 21.39 21.21 51.66 3142
TAMT (Ours) - 43.22 29.04 63.49 45.25¢113.83)
CDFSL-V [14] K400 — UCF —s 51.97 24.36 22.62 - 32.98
TAMT (Ours) 72.50 43.02 29.21 - 48.24(415.6)

Table S4. Comparison (%) with CDFSL-V [14] on across datasets setting. All results are conducted on ViT-S network with 112 x 112

resolution, reported 5-way 5-shot accuracy on test dataset.

Method K-shot Target
HMDB SSv2 Diving UCF RareAct Average

STARTUP++ [12] 16.66 14.17 13.13 24.48 17.21 17.13
DD++ [5] |-shot 17.44 14.96 13.73 26.04 19.02 18.24
CDFSL-V [14] 18.59 16.01 14.11 27.78 20.06 19.31
TAMT (Ours) 47.02 34.45 27.04 72.38 36.04 43.39(:24.08)
STARTUP++ [12] 24.97 15.16 14.55 32.20 31.77 23.73
DD++ [5] 25.99 16.00 16.24 34.10 31.20 24.71
SEEN*f [17] 5-shot 52.80 31.20 40.90 79.60 50.20 50.94
CDFSL-V [14] 29.80 17.21 16.37 36.53 3391 26.76
DMSD*f [4] 54.90 32.10 42.28 81.90 53.30 52.90
TAMT (Ours) 61.76 48.90 38.33 87.76 52.81 57913115
STARTUP++ [12] 30.48 17.15 17.30 34.02 38.45 27.48
DD++ [5] 20-shot 33.09 17.56 17.33 36.72 39.97 28.93
CDFSL-V [14] 36.89 18.72 17.81 39.92 42.51 31.17
TAMT (Ours) 73.71 5545 42.68 91.38 63.27 65.30(+34.13)

Table S5. Comparison (%) of state-of-the-arts on various 5-way K -shot settings (K = 1,5, 20) of CDFSAR with employing K-100 as
source dataset. All results are conducted with 112 x 112 resolution by using ViT-S backbone, except Method marked by * (224 x 224

resolution by using ResNet-18).

datasets. In addition, the performance of TAMT is boosted
by 14.52% and 21.91%, when extending 1-shot to 5-shot and
20-shot settings, which is more remarkable than the 7.45%
and 11.86% increase observed in CDFSL-V. All the above
results reveal that our TAMT has a good ability to explore
information lying in the annotated support set, effectively
handling the challenging 1-shot setting and benefiting from
the increase in support samples.

Generalization on FSAR Task. Our TAMT approach is
also evaluated on the conventional FSAR problem, where
we compare it alongside very recent Method based on large-

scale models, such as CLIP-ViT-B and BLIP-ViT-B, as
detailed in Tab. S6. Considering CLIP network is con-
ducted pre-training using 400M data, our TAMT employs
the Kinetics-710 [7] database for the pre-training phase with
about 660K trainable instances. The results demonstrate that
TAMT exhibits impressive performance superiority in dual
modality settings. Specifically, TAMT outperforms compa-
rable unimodal competitors by clear margin, which achieves
about 5.0% and 3.0% on average across multiple datasets.
Moreover, TAMT shows performance gain of 0.8% over
huge-pretrained models within the CLIP family in terms of



Method M. Pre-training Tuning HMDB SSV2 UCF Average
CLIP* [13] E CLIP-ViT-B Frozen 58.2/77.0 30.0/42.4 89.7/95.7 59.3/71.7
CapFSAR [18] g BLIP-ViT-B FFT 70.3/81.3 54.0/70.1 93.1/97.7 72.5/83.0
CLIP-CPM?C [3] :; CLIP-ViT-B FFT 75.9/88.0 60.1/72.8 95.0/98.6 77.0/86.5
CLIP-FSAR [19] = CLIP-ViT-B FFT 75.8/87.7 61.9/72.1 96.6/99.0 78.1/86.3
S OTAM*[I] | | CLIP-WTB(V) | FFT | 725/839 | 502/68.6 | 958988 | 72.8/83.8
TRX* [11] s BLIP-VIiT-B(V) FFT 58.9/79.9 45.1/68.5 90.9/97.4 65.0/81.9
HyRSM* [16] .g BLIP-VIiT-B(V) FFT 69.8/80.6 52.1/69.5 91.6/96.9 71.2/82.3
MASTAF [9] 5 JFT-ViT-B FFT 69.5/N/A 60.7/N/A 91.6/N/A 73.9/N/A
TAMT (Ours) ViT-B PEFT 77.7/88.2 61.4/73.3 97.5/98.8 78.9/86.8

Table S6. Comparison (%) of state-of-the-arts on FSAR setting in terms of 5-way 1-shot/5-shot accuracy. M.: Modality, (V): Only visual

encoder of CLIP. *: from [18, 19].
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Figure S1. Feature visualization on setting of K-400 — RareAct.

1-shot accuracy, despite the absence of auxiliary text modal-
ity. Notably, by using the PEFT training protocol, TAMT
theoretically benefits from a lower training complexity than
these full fine-tuning (FFT) approaches. These results show
that TAMT generalizes well to the FSAR setting, providing
an efficient and effective alternative.

3. Visualization Analyses

To further validate the effectiveness of our TAMT method for
addressing the problem of domain gap, we visualize feature

heatmaps (the last layer of the backbone) of different models
pre-trained on the source dataset (K-400) and those after
tuning on the target dataset (RareAct) in Fig. S1. It can be
observed that, on the source dataset, both CDFSL-V [14]
and our TAMT focus on discriminative regions. After tuning
on the target dataset, TAMT captures more semantic features
for better recognition (e.g., the human body and phone in
class “Hammer phone’), indicating superiority to address
the problem of domain gap on downstream tasks.



References

(1]

(2]

3

—

(4]

[5

—

(6]

[7

—

(8]

(9]

(10]

(11]

[12]

Kaidi Cao, Jingwei Ji, Zhangjie Cao, Chien Yi Chang, and
Juan Carlos Niebles. Few-shot video classification via tempo-
ral alignment. In IEEE/CVF Conference on Computer Vision
and Pattern Recognition (CVPR), pages 10615-10624, 2020.
3

Raghav Goyal, Samira Ebrahimi Kahou, Vincent Michal-
ski, Joanna Materzynska, Susanne Westphal, Heuna Kim,
Valentin Haenel, Ingo Fruend, Peter Yianilos, Moritz Mueller-
Freitag, et al. The “Something Something” video database
for learning and evaluating visual common sense. In /EEE
International Conference on Computer Vision (ICCV), pages
5843-5851, 2017. 1

Fei Guo, YiKang Wang, Han Qi, Li Zhu, and Jing Sun. Con-
sistency prototype module and motion compensation for few-
shot action recognition (CLIP-CPM2C). Neurocomputing,
611:128649, 2025. 3

Fei Guo, Yi Kang Wang, Han Qi, Li Zhu, and Jing Sun.
DMSD-CDFSAR: Distillation from mixed-source domain for
cross-domain few-shot action recognition. Expert Systems
With Applications, 270, 2025. 2

Ashraful Islam, Chun-Fu Richard Chen, Rameswar Panda,
Leonid Karlinsky, Rogerio Feris, and Richard J Radke. Dy-
namic distillation network for cross-domain few-shot recog-
nition with unlabeled data. Advances in Neural Information
Processing Systems (NeurlPS), 34:3584-3595, 2021. 2

H. Kuehne, H. Jhuang, E. Garrote, T. Poggio, and T. Serre.
HMDB: A large video database for human motion recogni-
tion. In International Conference on Computer Vision (ICCV),
pages 2556-2563, 2011. 1

Kunchang Li, Yali Wang, Yinan He, Yizhuo Li, Yi Wang,
Limin Wang, and Yu Qiao. UniFormerV2: Unlocking the
potential of image vits for video understanding. In Proceed-
ings of the IEEE/CVF International Conference on Computer
Vision (ICCV), pages 1632-1643,2023. 2

Yingwei Li, Yi Li, and Nuno Vasconcelos. RESOUND: To-
wards action recognition without representation bias. In Pro-
ceedings of the European Conference on Computer Vision
(ECCV), pages 513-528, 2018. 1

Xin Liu, Huanle Zhang, Hamed Pirsiavash, and Xin Liu.
MASTAF: A model-agnostic spatio-temporal attention fusion
network for few-shot video classification. In Proceedings of
the IEEE/CVF Winter Conference on Applications of Com-
puter Vision (WACV), pages 2508-2517, 2023. 3

Antoine Miech, Jean Baptiste Alayrac, Ivan Laptev, Josef
Sivic, and Andrew Zisserman. RareAct: A video dataset of
unusual interactions. arXiv preprint arXiv:2008.01018, 2020.
1

Toby Perrett, Alessandro Masullo, Tilo Burghardt, Majid
Mirmehdi, and Dima Damen. Temporal-relational cross
Transformers for few-shot action recognition. In /IEEE/CVF
Conference on Computer Vision and Pattern Recognition
(CVPR), pages 475-484,2021. 3

Cheng Perng Phoo and Bharath Hariharan. Self-training for
few-shot transfer across extreme task differences. In Interna-

tional Conference on Learning Representations (ICLR), 2021.
2

[13]

[14]

(15]

(16]

(7]

(18]

(19]

(20]

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry,
Amanda Askell, Pamela Mishkin, and Jack Clark. Learning
transferable visual models from natural language supervision.
In International Conference on Machine Learning (ICML),
pages 8748-8763. PMLR, 2021. 3

Sarinda Samarasinghe, Mamshad Nayeem Rizve, Navid Kar-
dan, and Mubarak Shah. CDFSL-V: Cross-domain few-shot
learning for videos. In Proceedings of the IEEE/CVF in-
ternational conference on computer vision (ICCV), pages
11643-11652,2023. 1,2, 3

Khurram Soomro, Amir Roshan Zamir, and Mubarak Shah.
UCF101: A dataset of 101 human actions classes from videos
in the wild. arXiv preprint arXiv:1212.0402, 2012. 1

Xiang Wang, Shiwei Zhang, Zhiwu Qing, Minggian Tang,
Zhengrong Zuo, Changxin Gao, Rong Jin, and Nong Sang.
Hybrid relation guided set matching for few-shot action recog-
nition. In IEEE/CVF Conference on Computer Vision and
Pattern Recognition (CVPR), pages 19916-19925, 2022. 3
Xiang Wang, Shiwei Zhang, Zhiwu Qing, Yiliang Ly,
Changxin Gao, and Nong Sang. Cross-domain few-shot ac-
tion recognition with unlabeled videos. Computer Vision and
Image Understanding (CVIU), 233:103737, 2023. 2

Xiang Wang, Shiwei Zhang, Hangjie Yuan, Yingya Zhang,
Changxin Gao, Deli Zhao, and Nong Sang. Few-shot ac-
tion recognition with captioning foundation models. arXiv
preprint arXiv:2310.10125, 2023. 3

Xiang Wang, Shiwei Zhang, Jun Cen, Changxin Gao, Yingya
Zhang, Deli Zhao, and Nong Sang. CLIP-guided prototype
modulating for few-shot action recognition. International
Journal of Computer Vision, 132(6):1899-1912, 2024. 3
Linchao Zhu and Yi Yang. Compound memory networks for
few-shot video classification. In Proceedings of the European
Conference on Computer Vision (ECCV), pages 751-766,
2018. 1



	Effect of Hyper-parameters on HTTN
	Generalization Verification
	Visualization Analyses

