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the first one lifts the right leg aggressively targeting the other individual.

both people are doing fencing practice, attacking each other with their swords. during the practice, the first person make a short lunge and touches 
the tip of the sword to the top of the second's head.

the first person presents the book's content to the second, and the second approves the book with a thumbs up gesture.

the two individuals swing both arms to the left.

Figure 1. Qualitative results on the motion in-betweening task. The first and last frames are fixed. Darker colors indicate later frames.

Appendix

A. Theoretical Analyses
We perform gradient magnitude analysis on separate mod-
eling (I) and our causal interactive modeling (II). Given
that two single-person motion sequences Xa and Xb, the
process of separate modeling is:
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*Equal contributions.
†Corresponding author.

where WQ, WK, and WV are trainable weights. After
causal interactive modeling, we can acquire X . Then we
can obtain the final output as:

Xout = Softmax(
(XWQ)(XWK)⊤√

d
)XWV . (2)

For ease of analysis, we use the MSE Loss function:
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The parameter gradient of separate modeling can be de-
noted as:
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According to the properties of the matrix 2-norm: ∥A∥2F =
Tr(A⊤A), so we can get the F-norm of the parameter gra-
dient as:

∥∇WL(I)∥2F = ∥∆aJa +∆bJb∥2F . (4)

Similarly, we can acquire the parameter gradient of our
causal interactive modeling and its F-norm as:
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where Tr represents the trace of a matrix.

As
(
[∆a|∆b] · Jself ·X⊤

out

)⊤
= Xout ·J⊤

self ·[∆a|∆b]
⊤,

we get the following equation:
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where J is the Jacobian matrix.
Assuming the input Xout is normalized and orthogonal

(X⊤
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Then we do the following:
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Next, we get the following two approximations:
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we apply the Cauchy-Schwarz and get:
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Thus, our causal interactive modeling allows for faster

model convergence.

B. More Experiments on InterX

To demonstrate the generalizability of our approach TIM-
otion, we perform corresponding experiments on another
large-scale human-human motion generation dataset, In-
terX [6]. We maintain the same experimental setup as
described in the paper. The results of comparative meth-
ods are directly borrowed from the InterX [6] paper ex-
cept T2M∗ [1] and InterGen∗ [2]. The results of T2M∗

are taken from the open source repository of InterX [6] and
the results of InterGen∗ are our own replication based on
the unorganized training code provided by the authors of
InterX and their open source validation code. Following
established practices [2], each experiment is conducted 20
times, and the reported metric values represent the mean
with a 95% statistical confidence interval. The results on In-
terX are shown in Tab. 1. In comparison to state-of-the-art
(SOTA) approaches, our method, TIMotion, which incorpo-
rates various interaction mixing structures (including Trans-
former, Mamba, and RWKV), consistently outperforms oth-
ers in terms of FID, R-Precision, Diversity, MM Dist, and
MModality.

C. Algorithm of the motion in-betweening task

For the motion in-betweening task, we directly use the
trained weights from the text-to-motion task. The overall
inference process of motion in-betweening based on TIMo-
tion is shown in Algorithm 1.

Algorithm 1 Inference of TIMotion on the Motion In-
betweening Task

Input: Ground Truth of Motion Sequences for Two
Individuals xa and xb, Length of the Sequence L, Ratio of
Fixed Sequences α, Maximum Timestep of Diffusion T ,
Text Embedding c.
Output: Predicted Motion Sequences for Two Individuals
x̂a
0 and x̂b

0.

1: xa
T ∼ N (0, I), xb

T ∼ N (0, I)
2: for t = T, · · · , 1 do
3: x̂a

0 , x̂
b
0 = Diffusion(xa

t , x
b
t , t, c)

4: x̂a
0 [0 : L ·α], x̂b

0[0 : L ·α] = xa[0 : L ·α], xb[0 : L ·α]
5: x̂a

0 [L−L ·α : L], x̂b
0[L−L ·α : L] = xa[L−L ·α :

L], xb[L− L · α : L]
6: ϵ ∼ N (0, I)
7: xa

t−1 =
√
αt−1x̂

a
0 +

√
1− αt−1ϵ

8: xb
t−1 =

√
αt−1x̂

b
0 +

√
1− αt−1ϵ

9: end for



Methods R Precision↑ FID↓ MM Dist↓ Diversity→ MModality↑Top 1 Top 2 Top 3

Real 0.429±.004 0.626±.003 0.736±.003 0.002±.0002 3.536±.013 9.734±.078 -

TEMOS [3] 0.092±.003 0.171±.003 0.238±.002 29.258±.0694 6.867±.013 4.738±.078 0.672±.041

T2M [1] 0.184±.010 0.298±.006 0.396±.005 5.481±.3280 9.576±.006 5.771±.151 2.761±.042

T2M∗ [1] 0.325±.004 0.487±.005 0.593±.005 3.342±.0572 4.506±.020 8.535±.055 0.982±.054

MDM [5] 0.203±.009 0.329±.007 0.426±.005 23.701±.0569 9.548±.014 5.856±.077 3.490±.061

MDM(GRU) [5] 0.179±.006 0.299±.005 0.387±.007 32.617±.1221 9.557±.019 7.003±.134 3.430±.035

ComMDM [4] 0.090±.002 0.165±.004 0.236±.004 29.266±.0668 6.870±.017 4.734±.067 0.771±.053

InterGen [2] 0.207±.004 0.335±.005 0.429±.005 5.207±.2160 9.580±.011 7.788±.208 3.686±.052

InterGen∗ [2] 0.400±.006 0.585±.006 0.695±.006 0.475±.0305 3.800±.020 9.095±.055 2.657±.090

TIMotion+transformer(ours) 0.412±.004 0.601±.004 0.714±.003 0.385±.0218 3.706±.015 9.191±.092 2.437±.069

TIMotion+mamba(ours) 0.414±.005 0.607±.004 0.713±.003 0.348±.0170 3.706±.014 9.095±.058 2.779±.083

TIMotion+RWKV(ours) 0.411±.005 0.597±.006 0.707±.004 0.261±.0140 3.737±.015 9.112±.079 2.475±.075

Table 1. Quantitative evaluation on the InterX [6] test set. We run the evaluations 20 times. ± indicates a 95% confidence interval.
Bold indicates the best result, while underline refers to the second best. The results of comparative methods are directly borrowed from
the InterX [6] paper except T2M∗ [1] and InterGen∗ [2]. The results of T2M∗ are taken from the open source repository of InterX [6] and
the results of InterGen∗ are our own replication based on the unorganized training code provided by the authors of InterX and their open
source validation code.

D. More Qualitative Results
Human-Human motion generation. We provide the sup-
plemental demo named demo.mp4.
Motion Editing. We provide qualitative results on the mo-
tion in-betweening task in Fig. 1. Our method achieves
smooth and natural transitions between the conditioned and
generated motions while complying with the text.

E. Metrics Computation
Frechet Inception Distance (FID): Features are extracted
from generated motions and real motions. Subsequently,
FID is calculated by comparing the feature distribution of
the generated motions with that of the real motions. FID
serves as a crucial metric extensively utilized to assess the
overall quality of the synthesized motions.

R Precision: For each generated motion, a description
pool is created consisting of its ground-truth text description
and 31 randomly chosen mismatched descriptions from the
test set. Next, the Euclidean distances between the motion
and text features of each description in the pool are com-
puted and ranked. We then calculate the average accuracy
at the top-1, top-2, and top-3 positions. If the ground truth
entry appears among the top-k candidates, it is considered a
successful retrieval; otherwise, it is deemed a failure.

MM Dist: MM distance is calculated as the mean Eu-
clidean distance between the motion feature of each gen-
erated motion and the text feature of its corresponding de-
scription in the test set.

Diversity: Diversity measures the variance of the gener-
ated motions. From the entire set of generated motions, two
subsets of the same size Sd are randomly sampled. Their
respective sets of motion feature vectors {v1, ...,vSd

} and

{v′
1, ...,vS′

d
} are extracted. The diversity of this set of mo-

tions is defined as

Diversity =
1

Sd

Sd∑
i=1

∥ vi − v′
i ∥2 . (13)

Sd = 300 is used in experiments.
MModality: MModality measures how much the gen-

erated motions diversify within the same text. Given a
set of motions corresponding to a specific text, two sub-
sets of the same size Sl are randomly sampled. Their re-
spective sets of motion feature vectors {vc,1, ... ,vc,Sl

} and
{v′

c,1, ...,v
′
c,Sl

} are extracted. The MModality of this mo-
tion set is formalized as

Multimodality =
1

C × Sl

C∑
c=1

Sl∑
i=1

∥∥vc,i − v′
c,i

∥∥
2
. (14)

Sl = 100 is used in experiments.

F. Limitation

Limited by the variety of two-person datasets, we demon-
strated the effectiveness of TIMotion mainly on the text-
to-motion task. In the future, we will validate our method
on more tasks based on newly released datasets. Moreover,
our proposed TIMotion effectively models the motion rela-
tionship between the two individuals, but the modeling of
motion relationships between three or more people has not
been explored yet. Related researchers in the community
are encouraged to explore more on motion modeling among
people and TIMoiton may provide some new insight for the
community.
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