TacoDepth: Towards Efficient Radar-Camera Depth
Estimation with One-stage Fusion

Supplementary Material

This supplement contains the following contents:
- More quantitative and qualitative results.

- More details on experimental settings.

- More implementation details for TacoDepth.

1. More Experimental Results

1.1. Quasi-dense Depth in Prior Arts

As mentioned in Fig. 2 and line 050 of our main paper,
previous multi-stage approaches [5, 6, 8, 9, 13, 15] predict
intermediate quasi-dense depth, which remains sparse and
noisy. We provide more visual results of their intermediate
and final depth in Fig. 1. Flawed quasi-dense results lead
to blurred details, disrupted structures, and noticeable arti-
facts in their final predictions, especially on nighttime and
glaring scenes, which limits the robustness of their models.

1.2. Model Robustness

We show more results to prove our robustness on both day-
time and nighttime scenes (Sec. 4.3, line 469, main paper).
Quantitative Results. As shown in Table 1, on the
nuScenes [2] dataset, we compare our model with the state-
of-the-art two-stage method of Singh et al. [13] on daytime
and nighttime scenes separately. For daytime samples, our
method reduces MAE and RMSE by 12.9% and 11.0%. On
nighttime scenarios, TacoDepth decreases MAE and RMSE
by 29.1% and 25.2%. The results can further highlight our
superior robustness under challenging nighttime conditions.
Visual Results. We present more visual comparisons for
daytime (Fig. 5, Fig. 6) and nighttime samples (Fig. 7,
Fig. 8). Without relying on the intermediate quasi-dense
depth [5-9, 13-15], TacoDepth robustly predicts accurate
depth with more complete structures and meticulous details
on daytime and nighttime scenes.

Reasons for Robustness. Our robustness can be attributed
to three factors. Firstly, our one-stage framework avoids re-
liance on intermediate results, thereby preventing the nega-
tive impacts of defective quasi-dense depth. Secondly, our
graph-based Radar structure extractor captures the informa-
tive geometric structures and graph topologies. Compared
with the simple point features [13], the overall structures are
more robust and resilient [4, 12, 18] against Radar outliers.
Furthermore, our pyramid-based Radar fusion module inte-
grates Radar and image information from shallow to deep
layers effectively. The Radar-centered flash attention can
efficiently build cross-modal correspondences and suppress
unreliable Radar points, which will be discussed in Sec. 1.3.
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Scene Method
MAE| RMSE| MAE| RMSE| MAE| RMSE|
Daytime  Singheral. [131 (CVPR'23) 1618.9 3613.0 19247 43592 2017.0 46325
AYUME  TacoDepth (Ours) 1389.5 3227.3 16809 3897.1 1782.4 4092.3
Nighitime Singheral. [13]1 (CVPR'23) 2340.8 4683.8 2863.9 50354 3012.9 6338.3
SNMUME 1) coDepth (Ours) 1673.6 36314 19448 44253 2207.6 4574.8
Overa Singheral. [131(CVPR'23) 1727.7 3746.8 2073.2 45907 2179.3 4898.7
Vera TacoDepth (Ours) 1423.6 32758 1712.6 3960.5 1833.4 4150.2

Table 1. Comparisons on daytime and nighttime scenarios of
the nuScenes [2] dataset. We calculate the average performance
improvements across the three different depth ranges. On daytime
scenes, compared with Singh ef al. [13], our method reduces MAE
and RMSE by 12.9% and 11.0%. On nighttime scenes, TacoDepth
decreases MAE and RMSE by 29.1% and 25.2%. Overall, our
model improves the performance by 17.0% and 13.9%. These re-
sults further prove our strong robustness on challenging scenarios.
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Figure 1. Intermediate quasi-dense depth [5-9, 13-15] remains
sparse and noisy. We showcase more intermediate and final re-
sults from the previous two-stage method of Singh er al. [13]
(CVPR’23). Pixels with valid depth values in the quasi-dense
depth are visualized by gray areas in red rectangular boxes. Only
few pixels exhibit valid depth. For some nighttime and glaring
conditions, even no pixels are predicted with depth values. Due
to the multi-stage frameworks [5-9, 13—15], the defective inter-
mediate depth could lead to blurred details, disrupted structures,
and noticeable artifacts in their final predictions. Our TacoDepth
does not rely on quasi-dense depth, achieving superior efficiency,
accuracy, and robustness with one-stage fusion.
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Figure 2. Visualization of attention maps. Some accurate Radar points are projected onto the image plane, as indicated by the colored
points and indices. For each Radar point, the attention computation is confined to Radar-centered areas to maintain efficiency. In the
attention maps, brighter colors represent higher attention scores. Our Radar-centered flash attention can effectively focus on correct
corresponding regions and establish cross-modal correspondences. The attention maps also accurately distinguish between foreground and

background, e.g., , road surface,

Module MAE| RMSE| FLOPs (G)|

Attention [16] 1982.4 4428.3 835.4
Radar-centered flash attention 1712.6 3960.5 139.3

Table 2. Ablation on the Radar-centered flash attention. We
compare the original attention [16] with our Radar-centered flash
attention implemented in TacoDepth. The MAE and RMSE are
evaluated on the nuScenes dataset [2] in 0-70 meters. The FLOPs
are reported for the whole model to process one 900 x 1600 image
and 30 Radar points. Without restricting the Radar-centered areas,
the original attention [16] fuses irrelevant image pixels and Radar
points, resulting in unacceptable computational overheads. In con-
trast, our Radar-centered flash attention can effectively establish
the cross-modal correspondences and maintain model efficiency.

Metric a; = {32,16,8} a,={48,32,16} a, = {64,48,32}

MAE| 1811.3 1712.6 1785.7
RMSE| 4179.8 3960.5 4082.2

Table 3. Ablation on the widths a; of Radar-centered areas.
The results are evaluated on the nuScenes dataset [2] in 0-70 me-
ters. Reducing a; could exclude some valid Radar points and im-
age pixels from the fusion process, leading to a decrease in depth
accuracy. On the other hand, since the horizontal Radar coordi-
nates are relatively precise, using larger a; could incorporate some
irrelevant points and increase computational costs. Thus, we adopt
a; = {48, 32,16} in our experiments for the three fusion layers.

1.3. Radar-centered Flash Attention

In Sec. 3.2, line 252 of the main paper, we propose the
Radar-centered flash attention mechanism in our pyramid-
based Radar fusion module to build cross-modal correspon-
dences between Radar points and RGB pixels. Here, we
provide additional experiments to demonstrate its efficacy.

Visualization of Attention Maps. In Fig. 2, we visualize
our Radar-centered flash attention. Several accurate Radar
points are projected onto the image plane. The attention is
calculated within Radar-centered areas for efficiency. Ex-
ternal pixels and points could not be correlated, since hori-
zontal Radar coordinates are relatively precise. As depicted
in Fig. 2, our Radar-centered flash attention can effectively
focus on the correct corresponding regions and establish
cross-modal correspondences. The attention maps also ac-
curately distinguish between foreground and background.

, side mirror, stone tablet,

, and billboard. Best view zoomed in on-screen for details.
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Figure 3. (a) Robustness to height ambiguity of 3D Radar. The
3D Radar suffers from height ambiguity [9] due to insufficient an-
tenna elements along the elevation axis. We simulate this issue by
manually altering the vertical coordinates of some accurate Radar
points (represented by the circles). Even with perturbed Radar
inputs (represented by the squares), our attention maps can still
identify the correct corresponding regions in the images, e.g., the
car wheel and the trees. (b) Robustness to Radar outliers. For
Radar outliers with inaccurate point coordinates or depth values,
e.g., , TacoDepth suppresses these
noisy points with low attention scores, such as the black attention
map. Image pixels are only integrated with reliable Radar points.
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Robustness to Height Ambiguity. Due to insufficient an-
tenna elements along the elevation axis, 3D Radar suffers
from height ambiguity [2, 9, 13] with unreliable vertical
coordinates. We simulate this issue by manually altering
the height dimensions of some accurate Radar points. As
shown in Fig. 3(a), even with perturbed Radar inputs, our
attention maps still identify correct corresponding regions.

Robustness to Radar Outliers. The accuracy of Radar is
generally lower than LiDAR. When faced with Radar out-
liers, as shown in Fig. 3(b), our Radar-centered flash atten-
tion can suppress the noisy points with low attention scores.
Image pixels will only be integrated with reliable Radar
points, which can further enhance the model robustness.

Ablation on Radar-centered Flash Attention. Following
Sec. 4.5, line 510 of our paper, we conduct an ablation on
the Radar-centered flash attention. In Table 2, we compare
the original attention [16] with our Radar-centered flash at-
tention implemented in TacoDepth. Without restricting the
Radar-centered areas, the original attention [16] fuses irrel-
evant image pixels and Radar points with heavy computa-
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Figure 4. Inference speed and Radar point numbers. We eval-
uate the Frames Per Second (FPS) of our TacoDepth with differ-
ent amounts of input Radar points. For the nuScenes dataset [2],
the average and maximum numbers of Radar points per sample
are 96.84 and 125. Our model achieves real-time processing (e.g.,
over 27.7 fps) across typical Radar point numbers on nuScenes [2].

tional overheads. In contrast, our Radar-centered flash at-
tention reduces the MAE, RMSE, and FLOPs by 13.6%,
10.6%, and 83.3%, which effectively establishes the cross-
modal correspondences and maintains model efficiency.
Ablation on the widths a; of Radar-centered areas. As
noted in Sec. 4.2, line 399 of the main paper, we set
a; = {48,32,16}. Here, in Table 3, we ablate this specific
choice. Reducing a; could exclude some valid Radar points
and image pixels from the fusion process, leading to a de-
crease in depth accuracy. On the other hand, since the hori-
zontal Radar coordinates are relatively precise, using larger
a; could incorporate some irrelevant points and increase
computational costs. Therefore, we adopt a; = {48, 32,16}
in all other experiments for the three fusion layers.

1.4. Model Efficiency

In Table 1 and Table 3 of the main manuscript, we com-
pare the model efficiency under one 900 x 1600 image and
30 Radar points. Here, in Fig. 4, we further evaluate the
inference speed of our TacoDepth with varying numbers
of Radar points as input. From 30 to 120 Radar points,
our model achieves real-time processing across the typical
range of Radar point numbers on the nuScenes [2] dataset.

Multi-stage methods [5-7, 13, 15] are complex and in-
efficient. Two-stage independent models [6-9, 13—15] use
two separate networks for intermediate and final depth.
The four-stage plug-in RadarCam-Depth [5] employs least-
squares optimization or RANSAC [3] for global alignment.
TacoDepth noticeably outperforms these models in effi-
ciency with one-stage fusion.

1.5. More Qualitative Results

We show more visual comparisons in Fig. 5, 6, 7, and 8.
The Fig. 5 and Fig. 6 contain daytime samples while Fig. 7
and Fig. 8 present nighttime scenarios.

2. More Details on Experimental Settings
2.1. Depth Metrics

As described in Sec. 4.1 of the main paper, following prior
arts [5, 6, 9, 13], we adopt the commonly-applied depth
metrics MAE, RMSE, iMAE, iRMSE, 67, and Rel for com-
parisons. Their definitions are specified in this section.

For Radar-Camera depth estimation, most previous
works [5-9, 13, 15] utilize MAE and RMSE for evalu-
ations. Besides, we also follow RadarCam-Depth [5] to
report iMAE and iRMSE on ZJU-4DRadarCam [5]. The
iMAE and iRMSE measure errors of inverse depth (i.e., dis-
parity), which are less sensitive to varied depth ranges (50,
70, or 80 meters).

To compare the plug-in models [5] with different depth
predictors [1, 10, 11, 19] (Table 4, main paper), we adopt
the 6; and Rel. These metrics are formulated as follows:
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* 47 Threshold: pixel percentage of prediction D such that
maa:(DDt, DD“) = § < 1.25, where D denotes the pre-
dicted depth. Dy, represents the depth ground truth. €,

depicts the mask of Dy, with valid depth values.

2.2. Data Processing

We further illustrate the data processing procedures for the
nuScenes [2] and ZJU-4DRadarCam [5] datasets (Sec. 4.2,
line 390, main paper). Following prior arts [5-7, 9, 13],
on the nuScenes [2] dataset, we accumulate 80 future and
80 past LiDAR frames to generate D,... Dynamic objects
annotated by bounding boxes are removed before the pro-
jection. On ZJU-4DRadarCam [5], since it contains denser
LiDAR returns and depth maps, we directly interpolate D,
to obtain D, as the RadarCam-Depth [5].
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Figure 5. Visual results on daytime scenes. Previous multi-stage methods [9, 13] exhibit disrupted structures, blurred details, or noticeable
artifacts. Our TacoDepth can predict accurate depth with complete structures and fine details. Best view zoomed in on-screen.

©
-

(7}
<

)
£
(]

Figure 6. Visual results on daytime scenes. Previous multi-stage methods [9, 13] exhibit disrupted structures, blurred details, or noticeable
artifacts. Our TacoDepth can predict accurate depth with complete structures and fine details. Best view zoomed in on-screen.

3. More Implementation Details for TacoDepth

Following Sec. 4.2, line 400 of the main paper, we present
more detailed descriptions regarding our implementations.

3.1. Graph-based Radar Structure Extractor

As mentioned in Sec. 3.1, line 190 of the paper, our
graph-based Radar structure extractor captures the geomet-
ric structures of Radar point clouds, involving a lightweight
GNN [4, 12, 18] architecture with L = 3 layers. Each layer

comprises a node and an edge generator. For one Radar
point, the node generator extracts local node features from
K-nearest neighboring points using MLPs, maxpooling, and
concatenation. With the node features, the edge generator
builds a soft adjacency matrix of Radar points as the edge
feature via MLPs and attention [4, 16]. Node features can
then be aggregated along edges by PCA-GM [17]. Thus,
from shallow to deep layers, graph-based Radar structure
extractor captures detailed coordinates and overall topolo-
gies, which are more robust to outliers [4, 12, 18].
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Figure 7. Visual results on nighttime scenes. Previous multi-stage methods [9, 13] rely on the intermediate quasi-dense results, which
lack robustness, producing final depth with disrupted structures or even obvious artifacts on nighttime scenes. In contrast, our TacoDepth
predicts more accurate depth with complete structures and fine details, showcasing our superior robustness. Best view zoomed in on-screen.
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Figure 8. Visual results on nighttime scenes. Previous multi-stage methods [9, 13] rely on the intermediate quasi-dense results, which
lack robustness, producing final depth with disrupted structures or even obvious artifacts on nighttime scenes. In contrast, our TacoDepth
predicts more accurate depth with complete structures and fine details, showcasing our superior robustness. Best view zoomed in on-screen.

3.2. Depth Decoder

With the fused features, a common decoder [1, 5, 9, 10, 13]
is employed to produce depth results (line 220, main paper).
Specifically, resolutions are gradually increased while chan-
nel numbers are decreased. Skip connections are adopted
to restore depth details. At last, an adaptive output mod-
ule [10] adjusts the channel and restores depth maps.

3.3. Auxiliary Input Branch

TacoDepth is flexible for independent and plug-in inference
(Sec. 3.3, main paper). For the plug-in mode, an auxiliary
branch processes initial relative depth [, 11, 19]. To be spe-
cific, convolution extracts features from initial depth, which
are then fused with RGB features by concatenation and con-
volution. Other steps are identical to the independent mode.



3.4. The Name of TacoDepth

Ultimately, we would like to explain the naming of our pro-
posed framework. We name it TacoDepth for two reasons.
Firstly, TacoDepth is an acronym derived from the words in
the title of our paper, representing our key objectives and fo-
cus, such as efficient, Radar, camera, depth, and one-stage.
Moreover, our task shares similarities with the concept of a
taco. Just as a taco wraps and blends diverse ingredients to
create a new flavor, our framework aims to fuse the informa-
tion from multiple sensors and modalities, yielding a more
accurate, effective, and robust depth estimation model.
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