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1. Detailed Model Complexity Analysis
In this section, we compare and analyze the computational
cost between the standard Transformer and the linear pro-
jection layer (LPL) used in OctAttention and our TopNet.
A standard Transformer block comprises the multi-head
self-attention (MSA) module and the feed-forward network
(FFN). For simplicity, we assume the Transformer consists
of 3 layers. Given an input feature of size N ×C, the com-
putational complexity measured in the number of floating-
point operations (FLOPs) can be calculated as follows:

Ω(MSA) = 6NC(Ck + Cv) + 3N2(Ck + Cv) (1)

Ω(FFN) = 6NC2R1 (2)

Ω(LPL) = NC2R2 + 255NCR2 (3)

where R1 and R2 are the expansion ratios for FFN and LPL,
respectively, while Ck and Cv represent the dimensions of
the key and value. In OctAttention, specific settings are
used C = Ck = Cv , R1 = 8 and R2 = 1, which simplifies
the costs as follows:

Ω(MSA) = 12NC2 + 6N2C (4)

Ω(FFN) = 48NC2 (5)

Ω(LPL) = NC2 + 255NC (6)

Ω(OctAttention) = Ω(MSA) + Ω(FFN) + Ω(LPL)

= 61NC2 + 6N2C + 255NC
(7)

For our proposed TopNet, the computational complexity is
computed as follows:

Ω(LeCE) =
5

4
kNC +

3

4
NC2 (8)

Ω(AL-SWA) = 12NC2 + 6N2C + 3kNC (9)

Ω(SG-CM) = 36NC2 + 12kNC (10)

Ω(LNOP) = 2kNC + 4NC2 + 255NC (11)

Ω(TopNet) =
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4
kNC +
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4
NC2 + 6N2C + 255NC

(12)
To clearly illustrate the computational complexity, we set
the depth-wise convolution kernel size to k = 3 and the
number of input feature channels to C = 256. Substituting
these values yields the following expressions for OctAtten-
tion and TopNet:

Ω(OctAttention) = 4072896N + 1536N2 (13)

Ω(TopNet) = 3537280N + 1536N2 (14)

Compared to OctAttention, the proposed TopNet demon-
strates significantly reduced computational costs, primarily
due to its streamlined architectural design. This reduction
in complexity enhances its efficiency, making it more prac-
tical for deployment in real-world applications, particularly
those with limited computational resources.

2. Effect of LeCE Module

In this section, we examine the contributions of the lo-
cal perception unit (LPU) and inception-residual network
(IRN) blocks within the LeCE module. The results are sum-
marized in Table 1, and demonstrate the effectiveness of
these components in improving compression performance.
• Baseline Model without Positional Encoding (w/o PE).

Adding absolute positional encoding (APE) resulted in
slight performance drops, with BPP increasing by 0.71%
for the 8iVFB dataset and 0.84% for the MVUB dataset.
This indicates that the original APE has minimal impact
on the model’s performance.

• LPU Block Only. Incorporating only the LPU block led
to BPP reductions of 0.53% for 8iVFB and 0.56% for
MVUB, emphasizing the role of the LPU in enhancing
the performance of LeCE.

• IRN Block Only. Adding only the IRN block further im-
proved performance, with BPP reductions of 0.88% for
8iVFB and 0.98% for MVUB, highlighting the efficiency
of the IRN in feature extraction.

• LPU and IRN Combined. The combination of both
blocks yielded the most significant improvements, with
BPP reductions of 1.24% for 8iVFB and 1.39% for
MVUB. This demonstrates the synergy between the LPU
and IRN in capturing local spatial structures and inter-
channel dependencies.

3. Effect of AL-SWA Module

This section investigates the contribution of various com-
ponents within the AL-SWA module, including depth-wise
convolution (DWConv), query embedding (QE), scaled dot
product attention (SDPA), scaled cosine attention (SCA),
and length-scaled cosine attention (LSCA). As shown in
Table 2, the use of DWConv alone results in BPP reduc-
tions of 2.23% for 8iVFB and 1.63% for MVUB compared
to the baseline model (MSA). When DWConv is combined
with QE, it achieves further BPP reductions of 3.08% for
8iVFB and 2.59% for MVUB. The introduction of SCA,
an improvement over SDPA, results in even greater reduc-



tions of 3.60% for 8iVFB and 3.00% for MVUB. Further-
more, the introduction of LSCA, which improves upon both
SCA and SDPA, leads to even more significant reductions
of 4.45% for 8iVFB and 3.68% for MVUB, underscoring
the substantial performance gains offered by LSCA over
the traditional scaled dot product and scaled cosine atten-
tion mechanisms.These results suggest that the integration
of efficient local feature extraction through DWConv, en-
hanced attention mechanisms with QE and LSCA, and the
synergistic effects of these components significantly boosts
the performance of the module.

Analysis. the improvements observed can be attributed
to the effective combination of local feature extraction us-
ing DWConv and advanced attention mechanisms provided
by QE and LSCA. This combination enhances efficiency
and ensures that the model can better capture both local and
global dependencies in the data.

4. Effect of SG-CM Module

This section investigates the impact of integrating spatial
convolution operations within the SG-CM on compres-
sion performance. The empirical findings are presented
in Table 3. After adding the DWConv operation, the SG-
CM achieved BPP reductions of 0.53% and 0.56% for the
8iVFB and MVUB datasets, compared to the initial baseline
model FFN. Subsequently, introducing the split (ST) oper-
ation, which decomposes along the channel dimension and
employs a gating mechanism to effectively reduce the num-
ber of model parameters, led to BPP reductions of 1.23%
and 1.25%. Finally, adding the shortcut (SC) operation fur-
ther decreased the BPP by 1.59% and 1.53% for the 8iVFB
and MVUB datasets, respectively.

Analysis. These results demonstrate the effectiveness of
the SG-CM in improving compression performance. The
observed performance gains are attributed to the efficient
feature extraction and parameter reduction enabled by the
combination of DWConv, ST, and SC operations. These
strategies highlight the value of integrating diverse convo-
lutional techniques to enhance compression efficiency.

5. Effect of LNOP Module

This section investigates the ablation experiments on LNOP
to assess the impact on compression performance. The re-
sults are presented in Table 4. When only the Sum oper-
ation was used, BPP decreased by 0.18% and 0.28% for
the 8iVFB and MVUB datasets, respectively. Adopting the
Star operation in the LNOP led to BPP reductions of 0.53%
and 0.56%, indicating that the Star operation performs bet-
ter in nonlinear fitting and prediction. Finally, adding the
SC operation further improved the model, resulting in BPP
reductions of 0.71% and 0.70% for the 8iVFB and MVUB
datasets, respectively.

Analysis. These results highlight the effectiveness of
the LNOP module in improving compression performance.
Both the Star and SC operations contribute to these im-
provements, with the performance gains attributed to en-
hanced nonlinear fitting capabilities and the efficient utiliza-
tion of residual connections.

6. Additional Qualitative Results of Recon-
struction Quality for Sparse LiDAR Point
Clouds

The qualitative results comparing compression distortions
at lower BPP between our method and baseline method at
similar bitrates are shown in Fig. 1. Our method achieves
higher D1 PSNR values and lower CD metrics, as shown in
Fig. 1. This indicates that the reconstructed point clouds
retain greater structural fidelity, with fewer artifacts, and
closely approximate the original input in terms of the num-
ber of reconstructed points. Higher D1 PSNR values indi-
cate that our method preserves structural fidelity more effec-
tively, producing reconstructed point clouds with fewer ar-
tifacts. Additionally, the lower CD metric demonstrates that
the geometric shapes of the reconstructed point clouds more
closely resemble their uncompressed counterparts, further
highlighting the effectiveness of our method in sparse point
cloud scenarios.



Module LPU IRN BPP (↓) on 8iVFB BPP (↓) on MVUB Param.

w/o PE 0.565 0.717 3.318M

APE 0.569 (+0.71%) 0.723 (+0.84%) 3.318M

LeCE ✓ 0.562 (−0.53%) 0.713 (−0.56%) 3.319M

LeCE ✓ 0.560 (−0.88%) 0.710 (−0.98%) 3.368M

LeCE ✓ ✓ 0.558 (−1.24%) 0.707 (−1.39%) 3.369M

Table 1. Results of ablation experiments on the 8iVFB and MVUB datasets for LeCE. Note that LPU denotes the local perception unit,
and IRN stands for the inception-residual network.

Module DWConv QE SDPA SCA LSCA BPP (↓) on 8iVFB BPP (↓) on MVUB Param.

MSA ✓ 0.584 0.734 3.359M

AL-SWA ✓ ✓ 0.571 (−2.23%) 0.722 (−1.63%) 3.368M

AL-SWA ✓ ✓ ✓ 0.566 (−3.08%) 0.715 (−2.59%) 3.369M

AL-SWA ✓ ✓ ✓ 0.563 (−3.60%) 0.712 (−3.00%) 3.368M

AL-SWA ✓ ✓ ✓ 0.558 (−4.45%) 0.707 (−3.68%) 3.369M

Table 2. Results of ablation experiments on the 8iVFB and MVUB datasets for AL-SWA. Note that DWConv denotes the depth-wise
convolution operation, QE stands for the query embedding strategy, SDPA denotes the scaled dot product attention, SCA denotes the
scaled cosine attention, and LSCA represents the length-scaled cosine attention.

Module DWConv ST SC BPP (↓) on 8iVFB BPP (↓) on MVUB Param.

FFN 0.567 0.718 4.153M

SG-CM ✓ 0.564 (−0.53%) 0.714 (−0.56%) 4.164M

SG-CM ✓ ✓ 0.560 (−1.23%) 0.709 (−1.25%) 3.369M

SG-CM ✓ ✓ ✓ 0.558 (−1.59%) 0.707 (−1.53%) 3.369M

Table 3. Results of ablation experiments on the 8iVFB and MVUB datasets for SG-CM. Note that DWC denotes the depth-wise convolution
operation, ST stands for the split operation, and SC represents the shortcut operation.

Module Sum Star SC BPP (↓) on 8iVFB BPP (↓) on MVUB Param.

LPL 0.562 0.712 3.169M

LNOP ✓ 0.561 (−0.18%) 0.710 (−0.28%) 3.369M

LNOP ✓ 0.559 (−0.53%) 0.708 (−0.56%) 3.369M

LNOP ✓ ✓ 0.558 (−0.71%) 0.707 (−0.70%) 3.369M

Table 4. Results of ablation experiments on the 8iVFB and MVUB datasets for LNOP. Note that Sum denotes the element-wise addition
operation, Star stands for the element-wise product operation, and SC represents the shortcut operation.
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Figure 1. Visualization of reconstructed point clouds at lower BPP for G-PCC (octree), OctAttention, and our TopNet across the Se-
manticKITTI, nuScenes, LiDAR-CS, and ScanNet datasets.
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