
Touch2Shape: Touch-Conditioned 3D Diffusion for

Shape Exploration and Reconstruction

Supplementary Material

In this supplement material, we supply additional infor-
mation, experiments, and results. This includes the network
architecture (Section A), the details of dataset processing
and experiment settings (Section B), additional experiment
results and some failure cases (Section C).

A. Network Details

As illustrated in Figure 2, our system comprises 8 key
modules: the VQVAE model, touch CNN, touch embed-
ding, contrastive touch encoder, vision embedding, diffu-
sion model, touch shape fusion module, and policy model.
The VQVAE model follows [5, 38], while the touch chart
prediction model is based on method [33, 34]. Details can
be found in the original papers of these methods. In the sub-
sequent section, we will delineate the network architectures
and training details for the remaining modules.

Touch Embedding. First, we use the touch CNN model
[33, 34] to generate local touch charts, and then transfer the
local charts to the world coordinate system based on the
touch location parameters. we assume that we can obtain
up to 20 tactile images, where each tactile image generates
a chart as a tensor of size 25→4 (each vertex contains coor-
dinates x, y, z, and touch status, the numnber of touch chart
vertex is 25). By merging all the vertices of these charts to-
gether, we create a tensor of size 20 → 25 → 4. If we have
fewer than 20 tactile images, the coordinates of the vertices
for the remaining charts are zeroed out. As shown in Fig-
ure 7 (a), we first apply position encoding to the centroid of
each chart, then apply two CNN blocks on the touch charts
to extract vertex features. After max pooling operations and
adding position encoding, we finally obtain 20 tokens. The
components of CNN blocks and position embedding mod-
ule is illustrated in table 6.

Contrastive Touch Encoder training. The contrastive
touch encoder is similar to the touch encoder shown in Fig-
ure 7 (a), with the addition of a max pooling layer at the end.
The output size of contrastive touch encoder is 1→768. The
latent encoder (Figure 7 (b)) takes the encoder latent vector
(of size 16→16→16→3) as input, outputs the shape feature
of size 1 → 768. The components of latent encoder is illus-
trated in table 6. We train the contrastive encoder and latent
encoder using moco [17]. The queue size is 6,000, tem-
perature parameter ω is 0.07, we train these encoders for 1
million iterations with batch size of 48.

Visual-tactile Setting. We employ ResNet18 [16] as
the visual backbone. By utilizing the feature maps (of size
8→8→512) from the fourth layer as input, we employ a lin-

ear layer to transform the features to a size of 8→ 8→ 768.
Each pixel is considered as a token, resulting in 64 visual
tokens. Following the approach of SDFusion [5], we lever-
age dropout operations on both visual and tactile tokens to
facilitate classifier-free guidance.

Diffusion Model. The denoising network is a U-Net like
SDFusion [5]. During the training phase, we randomly se-
lect the number of grasp less than the maximum value in
each batch. The maximum timestamps is 1,000 in the train-
ing phase. In the testing phase, the timestamp is set to 50,
and the unconditional guidance scale is 5.

Touch Shape Fusion. The network is depicted in Fig-
ure 3. The architecture of the encoder layers resembles the
encoder used in VQVAE [5, 38]. The layers of the voxel en-
coder and the VQVAE decoder are listed in Table 6. We ex-
tract the feature maps generated from the input convolution,
down block 1, and the middle block. The output shapes are
64→64→64→64, 32→32→32→256, and 16→16→16→256,
respectively. We pass the feature map of each encoder and
decoder layer through a 1→ 1→ 1 convolution layer. These
encoded features, along with the features from the shape
decoder layers are then calculated using formula 4 and pro-
cessed through an additional 1→ 1→ 1 convolution layer to
obtain the output feature map.

Policy Model. Initially, we employ the latent encoder to
encode the initial and current latent vector from the touch-
conditioned diffusion model. Subsequently, we construct
an action embedding module, as depicted in Figure 7 (c)
and Table 6, to derive the action embedding. By combining
these three vectors, we use fully connected layers to predict
the value associated with each action. Each action is iden-
tified by its positional index on a sphere consisting of 50
actions, as described in [34]. The episode ends after execut-
ing maximum grasps (with a maximum of 4 tactile images
for a 4-fingered hand in each grasp).

B. Dataset and Experiment Settings

We validate our model using two datasets. The first
dataset utilized is derived from [33, 34], built upon the ABC
dataset [21]. This dataset is used to compare experiment
results with ActiveVT [34] and VTRecon [33]. The sec-
ond dataset utilized is from [7], built upon the ShapeNet
dataset [3], and is used for comparing experimental results
with TouchSDF [7].

dataset ABC. This dataset consists of 40,000 objects
with unclear class definitions and varied shapes, posing
a significant challenge for generalization. Objects that

Figure 7. The network architectures of (a) the touch embedding module, (b) the latent encoder and (c) the policy model.

couldn’t be reduced to a specific size due to geometric
constraints or those with multiple disconnected parts were
excluded, resulting in a set of 26,545 usable object mod-
els. These objects were divided into 5 sets: 3 training
sets, each containing 7,700 objects, a validation set with
2,000 objects, and a test set of 1,000 objects. To acquire
TSDF volume, we normalize the object mesh and compute
the SDF values to construct a volume with a resolution of
64→ 64→ 64, using a truncation threshold of 0.2. The sim-
ulation environment of ActiveVT [34] is employed to grasp
objects and capture touch signals. The object mesh is nor-
malized and reduced in size by a factor of 3.1 before being
placed in the scene with the same position and orientation.
A four-fingered hand in the simulator grasps the object, and
the finger pose information during the grasp is used to posi-
tion a simulated camera with the same orientation. A depth
image is generated from this camera to produce a simulated
touch signal. For generating vision images, the object is as-
signed a random color texture and positioned in an empty
scene with four fixed point lights. The resulting images are
of size 256 → 256 → 3. Further details can be found in the
appendix of ActiveVT [34]. Note that the predicted chart
vertices should be scaled up by a factor of 3.1 before in-
putting to the touch condition module.

dataset ShapeNet. TouchSDF [7] collected a dataset
consisting of 1,650 objects which are divided into three sub-
sets: 1,100 objects for training, 200 for validation and 350
for testing. The chosen objects span six diverse categories
considered previously in related work: bowls, bottles, cam-
eras, jars, guitars and mugs. To assess the accuracy of the
reconstructed shapes, they also considered 300 unseen ob-
jects and poses across these six categories. The process of
creating T-SDF volumes and vision images are the same
with the methodology used for the ABC dataset. For tac-
tile images, we follow the setting of TouchSDF [7] which
captures tactile image by poking the target object for fair

comparison. In this setting, at most one valid tactile image
can be obtained per touch action.

Evaluation Metrics. As illustrated in Section 4.2, we
use CD metric to evaluate the results with ActiveVT [34]
and VTRecon [33] on dataset ABC and use EMD met-
ric to evaluate the results with TouchSDF [7] on dataset
ShapeNet. It’s reported in TouchSDF [7] that they achieves
better EMD but lower CD. To compute the CD error, we run
marching cubes to get the object meshes and extract 30,000
points uniformly from each sample. The formula for com-
puting the CD error is as follows:

CD(P,G) = ε · 1

|P |
∑

p→P

min
g→G

↑p↓ g↑2+

ε · 1

|G|
∑

g→G

min
p→P

↑p↓ g↑2,
(7)

where p and g are point in poinstets P sampled on predicted
mesh surfaces and point ground truth pointsets G respec-
tively. The coefficient ε is set to 9,000. Note that the scale
is reduced by 3.1 times in ActiveVT [34]. So we reduce the
scale of extracted points by 3.1 times to match the ground
truth scale before we computed CD error.

EMD error can be computed as follows:

EMD(P,G) = min
ω:P↑G

∑

p→P

||p↓ ϑ(p)||2, (8)

where ϑ : P ↔ G is a bijection. Note that the computation
of TouchSDF [7] is conducted on normalized objects, hence
when compared with TouchSDF [7] using the EMD metric,
we no longer reduce the generated point cloud scale.

C. Additional Results

Additional Results on ABC. The visualization results
of visual-tactile settings are shown in Figure 4. In Figure

Ground

truth

points

(ActiveVT)

points

(ours)

mesh

(ActiveVT)

mesh

(ours)

Figure 8. Qualitative results of ActiveVT [34] and ours under the tactile only setting (5 grasps). While ActiveVT struggles with visualiza-
tions and detail preservation, our method excels in maintaining global shape across diverse structures, and ensuring the local details.

8, we present the reconstruction visualization of tactile only
settings (5 grasps). While ActiveVT [34] tends to gener-
ate awful visualizations on mesh surfaces and point cloud
generation, it does manage to retain shapes similar to the
ground truth for some structurally simple objects. How-
ever, when dealing with complex shapes or objects with
cavities, it tends to lose many details. On the other hand,
our approach excels in preserving overall global shape out-
put across various shapes and delivers satisfactory results in
local details as well.

Additional Results on ShapeNet. The mesh reconstruc-
tion for both seen and unseen objects, acquired from 20 ran-
domly sampled touches, is illustrated in Figure 9. These vi-
sualizations showcase the model’s capability to predict not
only the overall structure but also to preserve intricate lo-
cal details. Across all experimental results, it is clear that
our model yields promising reconstruction on two distinct
datasets, ShapeNet and ABC, underscoring its capacity for
generalization.

Policies. Table 5 displays the changes in the ratio of the
CD error compared to the initial CD with the increasing
number of grasps under different strategies (under tactile
only setting). The oracle strategy serves as the upper bound
for all strategies as the true optimal policy cannot be com-
puted in a reasonable time frame. It can be observed that the

even algorithm may initially achieve better reconstruction,
but as the grasps progress, our method is able to achieve
greater improvements in reconstruction, validating that the
learned policies is able to select more beneficial grasps. The
evolution of the reconstructed shape from our model with
an increasing number of grasps and relative predicted touch
points can be found in Figure 5.

Failure Cases. Some failure cases under visual-tactile
setting are shown in Figure 10. In these cases, although
we can ensure the basic global structure, our method per-
forms poorly on some local holes and screw threads. The
main reasons may include the potential structural variations
and complicated local details of these shapes, or the lack
of symmetry in some hole positions, making it difficult to
explore the target object.

Method
Grasp #

0 1 2 3 4 5
Oracle 100 12.0 6.86 5.01 4.90 4.88

Random 100 21.9 13.5 10.5 8.82 8.14
Even 100 15.3 10.2 9.13 8.23 7.44
Ours 100 16.9 9.62 7.62 6.88 6.63

Table 5. Comparison of touch exploration policy on dataset ABC
under touch only setting. The evaluation metric is CD error.

Model Module Input shape Operation Output shape

Touch Embed

CNN Block 1
20→ 25→ 4 Conv (1→ 1) + BN +

ReLU
20→ 25→ 128

20→ 25→ 128 Conv (1→ 1) + BN +
ReLU

20→ 25→ 256

CNN Block 2
20→ 25→ 512 Conv (1→ 1) + BN +

ReLU
20→ 25→ 1024

20→ 25→ 1024 Conv (1→ 1) + BN +
ReLU

20→ 25→ 768

Position Embed
20→ 3 FC + ReLU 20→ 128
20→ 128 FC 20→ 768

Latent Encoder

CNN Block 1
16→ 16→ 16→ 3 Conv (3→3→3) + BN

+ ReLU
16→ 16→ 16→ 128

16→ 16→ 16→ 128 Conv (3→3→3) + BN
+ ReLU

16→ 16→ 16→ 128

16→ 16→ 16→ 128 Average Pooling (2→
2→ 2)

8→ 8→ 8→ 128

CNN Block 2
8→ 8→ 8→ 128 Conv (3→3→3) + BN

+ ReLU
8→ 8→ 8→ 512

8→ 8→ 8→ 512 Conv (3→3→3) + BN
+ ReLU

8→ 8→ 8→ 512

8→ 8→ 8→ 512 Average Pooling (2→
2→ 2)

4→ 4→ 4→ 512

CNN Block 3
4→ 4→ 4→ 512 Conv (3→3→3) + BN

+ ReLU
4→ 4→ 4→ 512

4→ 4→ 4→ 512 Conv (3→3→3) + BN
+ ReLU

4→ 4→ 4→ 512

4→ 4→ 4→ 512 Average Pooling (2→
2→ 2)

2→ 2→ 2→ 512

Linear Layer
2→ 2→ 2→ 512 Reshape 1→ 4096
1→ 4096 FC 1→ 768

Touch Shape Fusion

Encoder Layers

64→ 64→ 64→ 1 Input Convolution 64→ 64→ 64→ 64
64→ 64→ 64→ 64 Down Block 1 32→ 32→ 32→ 256
32→ 32→ 32→ 256 Down Block 2,3,4 +

Middle Block
16→ 16→ 16→ 256

Decoder Layers

16→ 16→ 16→ 3 Convolution + Mid-
dle Block

16→ 16→ 16→ 256

16→ 16→ 16→ 256 Up Block 1 32→ 32→ 32→ 256
32→ 32→ 32→ 256 Up Block 2,3,4 64→ 64→ 64→ 64

Policy Model

Action Embed

1→ 50 FC + ReLU 1→ 128
1→ 128 FC + ReLU 1→ 256
1→ 256 FC 1→ 768

Value Net

(1→ 768)→ 3 Concatenating 1→ 2304
1→ 2304 FC + ReLU 1→ 512
1→ 512 (FC + ReLU) →3 1→ 128
1→ 128 FC 1→ 50

Table 6. Architecture of each model. Conv: convolution layers with different kernel size, BN: batch normalization layers, ReLU: Rectified
Linear Unit, FC: Fully Connected layers.

Seen objects and poses

Ground

truth

Reconstructed

Mesh

(20 touches)

Unseen objects and poses

Ground

truth

Reconstructed

Mesh

(20 touches)

Figure 9. Reconstruction visualizations of seen and unseen objects on dataset ShapeNet.

Ground

truth

points

(ActiveVT)

points

(ours)

mesh

(ActiveVT)

mesh

(ours)

Figure 10. Some failure cases.

	Introduction
	Related Work
	Method
	Touch-conditioned Diffusion Model
	Touch Shape Fusion
	Policy Training

	Experiment
	Experimental Settings
	Evaluation on Reconstruction Performance
	Evaluation on Policy
	Ablation Study

	Conclusion
	Network Details
	Dataset and Experiment Settings
	Additional Results

