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6. Benchmark Details

To evaluate the capabilities of our model, we constructed
a more comprehensive benchmark based on A&E [6].
Through our analysis, we identified that previous bench-
marks primarily focused on coarse-grained attribute binding
and lacked specific and complex scenarios. For example,
prior benchmarks often evaluated prompts such as ”a pur-
ple dog and a green bench.” To address this limitation, we
augmented the coarse-grained attribute binding tasks with
specific place. For example, our prompts include cases such
as ”a green rabbit and a yellow bowl in the kitchen.”

We argue that coarse-grained attribute binding alone
is insufficient to comprehensively evaluate model perfor-
mance. Therefore, we further extended the benchmark
with fine-grained attribute binding and style binding tasks.
Specifically, we manually created 56 fine-grained attribute
binding prompts and 48 style binding prompts. Fine-
grained attribute binding requires the model to control the
attributes of different parts of a concept, while style prompts
demand that multiple concepts within a single image exhibit
distinct styles, the style prompts include categories such as
”cyberpunk,” ”watercolor,” ”photorealistic,” ”anime,” and
others. The details of our benchmark is presented in Ta-
ble 5.

For quantitative evaluation, we used metrics including
text-to-text similarity and BLIP-VQA and additionally em-
ployed image-text similarity evaluation as discussed in sec-
tion 8. Since both fine-grained attribute binding and style
binding tasks involve only two concepts, we generated
two questions per prompt for BLIP-VQA evaluation. For
coarse-grained attribute binding tasks, as the generated im-
age must adhere to specific locations, we generated three
questions per prompt. For example, given the prompt ”a
blue dog and a red bench in the street,” the correspond-
ing questions are: ”a blue dog?”, ”a red bench?”, and ”the
street?”

This enhanced benchmark allows for a more comprehen-
sive evaluation of model capabilities across coarse-grained,
fine-grained, and style attribute bindings. Our evaluation
was conducted on RTX 3090 GPUs, with each generation
taking approximately 20 seconds.

7. Algorithm Details

The process of our method is detailed in Algorithm 1.
Specifically, the SCG function corresponds to the approach
for obtaining the new attention map described in Equation 2.

Algorithm 1 Self-Coherence Guidance.

Input: A text prompt P , random seed s and
hyper-parameter c.
Output: The latent space z0 corresponding to images with
strong consistency to the text prompt P .

1: for t = T, T − 1, . . . , 1 do
2: z∗t−1, At ← DM(zt, t)
3: Mt ← Cluster(At)/LLMplanning(At)
4: h0 = zt
5: for n = 1, 2, . . . , N do
6: An

t ← TransBlockn(hn−1)

7: Ân
t ← SCG(An

t ,Mt+1, c)

8: hn ← TransBlockn(hn−1){An
t ← Ân

t }
9: end for

10: zt−1 = hN

11: end for
12: Return z0

Here, N represents the number of Transformer blocks, h
represents the hidden state that each Transformer block out-
puts, Mt represents the masks of the concepts extracted for
the next step. We iteratively replace the original attention
maps with the new attention maps for each block.

8. More Quantitative Results
To further quantitatively evaluate the performance of our
method, we employed image-text similarity as a metric.
Following [6, 23], we utilized CLIP to separately encode
images and their corresponding textual descriptions and
computed their similarity scores, as shown in the Fig. 7. In
this evaluation, “Full Prompts“ similarity refers to the sim-
ilarity between the complete prompt and the image, while
“Minimum Object“ similarity measures the similarity be-
tween the image and the neglected half of the text prompt.

Our method consistently outperforms previous ap-
proaches across all three tasks, with significant improve-
ments in average similarity for both coarse-grained and fine-
grained attribute binding. Notably, while the CONFORM
achieves results close to ours on coarse-grained attribute
binding, it fails to generalize effectively to fine-grained at-
tribute binding and style binding, showing the poorest per-
formance in the latter. The original PIXART-α model per-
forms reasonably well on fine-grained attribute binding, and
our approach further enhances its performance, achieving



Table 5. The details of our benchmark. BLIP-VQA refers to the number of generated questions when evaluated using the BLIP-VQA
metric.

Task Template & Example Prompt number BLIP-VQA

Coarse-grained

a [colorA][conceptA] and a [colorB][conceptB]

54 3‘a black backpack and a pink balloon’

a [colorA][conceptA] and a [colorB][conceptB] in the [place]
‘a blue rabbit and a yellow bowl in the kitchen’

Fine-grained a [concept] with a [colorA] [partA] and a [colorB][partB] 56 2
‘an apple with a orange stem and blue flesh’

Style a [styleA][conceptA] and a [sytleB][conceptB] 48 2
‘a anime cat and a photorealistic kitchen’

Figure 7. Comparison of average image-text similarity across different tasks. We compare our proposed method with the original PIXART-
α model and two state-of-the-art aligned generation methods built on SD: D&B and CONFORM.

the best results. However, for style binding, the improve-
ment of our method over D&B is relatively modest.

We attribute this limitation to the BLIP-caption model,
which lacks specialized training for style-specific images.
Consequently, it struggles to capture the fine-grained stylis-
tic details of different concepts in images, demonstrating
insensitivity to style.

In addition, we also employed the evaluation metric
VQAScore. VQAScore is similar to the BLIP-VQA metric,
as both assess image-text alignment by leveraging a VQA
model. As shown in table 6. Our method achieves SOTA
results on this additional metric as well.

To achieve a more accurate analysis, we provide a more
comprehensive qualitative evaluation in the following sec-
tion.

Table 6. Comparison of VQAScore. Our method still achieves
state-of-the-art performance on this metric.

Method Coarse-grained Fine-grained Style

D&B(SD) [19] 0.372 0.342 0.307
CONFORM(SD) [23] 0.412 0.376 0.312
PIXART-α [7] 0.387 0.437 0.320

Ours 0.476 0.488 0.366

9. Ablation Study

We conduct ablation studies to compare the performance of
LLM and K-means approaches. Specifically, we evaluate
both methods across three tasks: coarse-grained attribute
binding, fine-grained attribute binding, and style binding.
BLIP-VQA is used as the evaluation metric. The results
are shown in table 7. Our experimental results demonstrate
that the LLM-based approach performs better on the fine-



Flux Flux+ours Flux Flux+ours

a purple crown and a blue suitcase a pink crown and a red chair

Figure 8. The experimental results on Flux demonstrate that our
method remains effective under the MMDiT architecture..

grained attribute binding task.We attribute this to the fol-
lowing three reasons. First, the saliency of attention maps
varies across different tasks, with fine-grained tasks exhibit-
ing the least salient attention maps. Second, clustering al-
gorithms process signals directly from the model output,
whereas LLMs incorporate external knowledge to assist in
interpreting the output. As a result, when the attention map
is highly salient, clustering algorithms achieve better per-
formance. Finally, LLMs provide additional benefits only
when the attention map lacks saliency, making them more
effective in fine-grained tasks.

Table 7. Ablation study comparing different grouping strategies.

Method Coarse-grained Fine-grained Style

w/ LLM 0.647 0.623 0.781
w/ K-means 0.679 0.613 0.799

10. Generalizability
To verify the generalization capability of our method, we
further conduct experiments on Flux [1]. Unlike PIXART-
α [7], Flux [1] adopts the MMDiT architecture, which con-
catenates the QKV of text and image modalities before
computing attention. In this setting, we still treat the dot
product between the image queries and text keys as the
cross-attention map on which our method operates. As
shown in Fig 8, our approach remains effective under the
MMDiT architecture, demonstrating strong generalization
ability.

11. More Qualitative Results
To further validate the effectiveness of our approach, we
provide additional qualitative analysis results for fine-
grained attribute binding, style binding, and coarse-grained
attribute binding tasks.These results further validate the ef-
fectiveness of our method.



Ours D&B CONFORMPIXART−𝛼

a clock with a brown 

dial and blue hands

a lollipop with a blue 

candy and a yellow stick

a mushroom with a purple 

cap and an orange stem

a rose with a pink flower 

and an orange stem

an umbrella with a red 

canopy and a green handle

Figure 9. Qualitative analysis of fine-grained attribute binding comparing our method with other SOTA approaches. Our method enables
more precise control over the attributes of concepts.



Ours D&B CONFORMPIXART−𝛼

a cake with a pink base 

and blue candles

an umbrella with a blue 

canopy and a pink handle

an apple with a red 

stem and blue flesh

a leaf with blue foliage 

and pink veins

a sunflower has an orange 

flower and a purple stem

Figure 10. Qualitative analysis of fine-grained attribute binding comparing our method with other SOTA approaches. Our method enables
more precise control over the attributes of concepts.



Ours D&B CONFORMPIXART−𝛼

an anime cat and a 

photorealistic kitchen

a pixar-style dog and a 

cyberpunk street

a photorealistic Ironman and 

an impressionism street

a cyberpunk panda and 

a watercolor alleyway

an impressionism sky and 

a photorealistic street

Figure 11. Qualitative analysis of style binding comparing our method with other SOTA approaches. Our method effectively binds styles
to different concepts.



Ours D&B CONFORMPIXART−𝛼

a pixar-style girl and a ink-

wash-paint countryside

an ink-wash-paint countryside 

and a cyberpunk cabin

an impressionism sky and 

a photorealistic street

a pixar-style boy and a 

watercolor building

a pixel-art castle and a 

photorealistic lake

Figure 12. Qualitative analysis of style binding comparing our method with other SOTA approaches. Our method effectively binds styles
to different concepts.



Ours D&B CONFORMPIXART−𝛼

a red rabbit and a green 

bench in the street

a pink crown and 

a red chair

a purple chair and an 

orange bowl

a green dog and a purple 

bench in the street

a green bench 

and a red apple

Figure 13. Qualitative analysis of coarse-grained attribute binding comparing our method with other SOTA approaches. Our method not
only achieves attribute control but also generates higher-quality concepts.



Ours D&B CONFORMPIXART−𝛼

a green rabbit and a purple 

bench in the street

a yellow backpack and 

a gray apple

a red lion and a green 

chair in the street

a yellow rabbit and a 

purple bowl in the kitchen

a red cat and a purple 

bowl in the kitchen

Figure 14. Qualitative analysis of coarse-grained attribute binding comparing our method with other SOTA approaches. Our method not
only achieves attribute control but also generates higher-quality concepts.
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