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1. Settings

In our main article, we use the LLaVA-1.5-7b model [2] to
analyze the evolution patterns of multimodal knowledge in
Large Vision-Language Models (LVLMs) and observe var-
ious phenomena from the token probabilities level, prob-
ability distributions level, and feature encoding level. To
validate the generality of these observations, we conduct
additional experiments with the LLaVA-1.5-13b model [2].
This model operates similarly to the 7b version: multimodal
inputs are first processed to extract features, then the image-
text features are aligned through a linear projection, and fi-
nally, the aligned multimodal features are fed into a 40-layer
Vicuna model [1] to generate the texts.

2. Token Probability Analyses

The prompt we use is “Please describe this image in de-
tail”, and early exit is applied to compute the probabilities
for each token across different layers. An example with the
probabilities of 24 tokens is shown in Figure 1. It can be
observed that in the shallow layers, the probabilities of all
tokens are very low, close to zero. Around the 20-th layer,
the probabilities of some tokens suddenly increase, giving
them a probabilistic advantage. The number of such tokens
is extremely small, which means only a few during each
token prediction process, while the probabilities of the re-
maining tokens consistently remain close to zero. Addi-
tionally, after gaining a probabilistic advantage, some to-
kens undergo another abrupt change in their probabilities.
This indicates the emergence of new knowledge, altering
the prediction probabilities of tokens. When this change is
significant enough, it can lead to the creation of new tokens
with probabilistic advantage, thereby influencing the out-
put. Figure 2 presents the statistical results of the critical
layers across different models, showing that while distribu-
tion of critical layer varies slightly between models, it is

primarily concentrated in the 16th-19th layers.

3. Token Distribution Analyses
The probability distributions of four examples from the
AMBER dataset [3] are shown in Figure 3 and Figure 4.
#1: A noticeable shift in the JS divergence values emerges
at approximately the 16-th layer. The early layers exhibit
high divergence values, while beyond the 16-th layer, these
values drop sharply to nearly zero and stay consistent up to
the output layer. This indicates that before the 16-th layer,
knowledge is in a phase of rapid evolution. After the 16-th
layer, the knowledge derived from the input stabilizes, and
the rate of evolution slows down. #2: During the next-token
prediction process, the JSDs often undergo abrupt changes
in the deeper layers, indicating that new information is be-
ing injected into the network, triggering a secondary evolu-
tion of knowledge within the model.

Figure 5 and Figure 6 show some experimental results of
the skip connection setting: jumping from the critical lay-
ers to the mutation layers (skip.1), skipping only the muta-
tion layers (skip.2), and jumping directly from the critical
layers to the last five layers (skip.3). In the skip.1 setting,
the model’s output is semantically similar to the original,
whether it involves correct or hallucinated descriptions, in-
dicating that knowledge evolves slowly during the stabiliza-
tion stage. In the skip.2 setting, the model not only pre-
serves most of the original semantics but also corrects some
hallucinations, suggesting that the information injected at
the mutation layers is likely external and does not origi-
nate from the multimodal input. By skipping the mutation
layers, knowledge from the shallow layers can be directly
passed to the deeper layers, thereby ensuring faithfulness to
the input. In the skip.3 setting, the model’s output quality
deteriorates significantly, demonstrating the persistence of
knowledge evolution in LVLMs, albeit at a relatively slow
pace after the critical layers.
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Figure 1. The probabilities of tokens across different layers during normal inference processes.

Figure 2. Critical layers distribution across various models.

4. Feature Encoding Analyses

We use t-SNE to compress the high-dimensional feature en-
codings, and some results on the single images for different
tokens are shown in Figure 7. We observe that the feature
encodings of different tokens tend to converge in the ini-
tial layers and gradually diverge in the deeper layers. This
suggests that the knowledge learned in the initial layers is
similar across tokens, while as the layers deepen, the knowl-
edge evolves to exhibit token-specific characteristics. Fur-

thermore, for the same token, its features across different
layers diverge in an approximately linear manner, indicating
a degree of continuity in the knowledge evolution. How-
ever, this continuity may be disrupted by injected informa-
tion, as evidenced by the separation between shallow and
deep features for some tokens. We then conduct an analy-
sis on different images in a question-answering task, where
the model is prompted to output the key objects in the im-
age. We observe that in the shallow layers, the features of
all images are similar, indicating that the knowledge learned
by the model for different inputs is general. However, after
the critical layers, the features gradually diverge, resulting
image-specific characteristics.
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Figure 3. The JS divergences of token probability distributions across adjacent layers during normal inference processes.
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Figure 4. The JS divergences of token probability distributions across adjacent layers during normal inference processes.



Figure 5. The effect of skip connections on model’s output. From left to right: the original image, the descriptions from the original model,
the descriptions when skipping from the critical layers to the mutation layers, the descriptions when only skipping the mutation layers, and
the descriptions when skipping from the critical layers to the last few layer (as the layers near the output contain linguistic priors, we retain
the final 5 layers). Hallucinated tokens are marked in red, and corrected tokens are marked in green.



Figure 6. The effect of skip connections on model’s output. From left to right: the original image, the descriptions from the original model,
the descriptions when skipping from the critical layers to the mutation layers, the descriptions when only skipping the mutation layers, and
the descriptions when skipping from the critical layers to the last few layer (as the layers near the output contain linguistic priors, we retain
the final 5 layers). Hallucinated tokens are marked in red, and corrected tokens are marked in green.



Figure 7. Feature encodings across layers in the same image for different tokens.



Figure 8. Features encodings across layers for different images.
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