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Supplementary Material

1. Limitations

Our DiT-based method for RGBA generation incurs
quadratic computational costs due to sequence expansion.
However, our method achieves an optimal balance be-
tween generation and alignment when trained with a lim-
ited dataset. Numerous studies [1, 5, 7] have addressed the
computational overhead of long sequences, with many op-
timizations reducing complexity to a linear scale. To en-
hance the efficiency of our method, we plan to incorporate
these optimizations in future work. Additionally, our per-
formance is influenced by the generative priors provided by
the chosen T2V model, which affects the quality and con-
sistency of our outputs.

2. Comparisons with Video Matting

We compare our method with video matting methods Bi-
Matting [4] and Robust Video Matting (RVM) [3], as well
as the image matting method Matte-Anything [6]. From
the results, it is evident that most methods, trained on the
VideoMatte240k [2] dataset, struggle to produce valid out-
puts for non-human objects, often resulting in empty results.
Even image matting methods trained on large-scale datasets
fail to handle certain visual effects correctly. Results are
shown in the attached HTML source files.

3. Data Preprocessing

Color Decontamination. In our method, we preprocess
the training data by applying a color decontamination step
to enhance the quality of the RGBA video generation.
Color contamination typically occurs when there is an un-
desired blending of foreground and background colors, es-
pecially along the edges of an object, due to imperfect al-
pha masks. This blending causes color bleeding, where the
foreground and background colors mix, resulting in lower
quality RGBA frames with inaccurate color representation.
To address this issue, we refine the alpha mask using pa-
rameters such as gain (v = 1.1) and choke (xy = 0.5) to
adjust the sharpness and influence of the mask edges. The
decontaminated RGB values are then computed as follows:

RGBgecon = RGB x (1—maskefined ) +maskiefined X Background

This equation ensures that unwanted color contamina-
tion is minimized, providing a more precise distinction be-
tween foreground and background regions. By perform-
ing this preprocessing step, we generate high-quality train-

ing data that significantly improves the performance of our
RGBA video generation model.

Background Blurring. Unlike typical training strategies in
video matting methods, where objects are composited with
complex backgrounds to increase the difficulty of the task,
our goal is to support joint generation of alpha and RGB
channels while ensuring alignment between them. Instead
of emphasizing complex matting, we focus on generating
consistent and high-quality output by compositing objects
with simple, static backgrounds that match the black areas
in the alpha channel. Specifically, we apply a large Gaus-
sian blur kernel of size 201 to the first frame to create a
blurred background and blend each subsequent frame with
this static background. This approach helps simplify the
training conditions, allowing the model to better align the
RGB and alpha components while maintaining high-quality
output.

4. Optical Flow Difference

To evaluate the alignment between the RGB and alpha chan-
nels in generated videos, we introduce a metric based on
optical flow difference. Optical flow measures the apparent
motion of objects between consecutive frames, and compar-
ing the optical flow fields of RGB and alpha frames pro-
vides insight into the consistency of motion across these
modalities. Specifically, we use the Farneback method
(cv::calcOpticalFlowFarneback) to compute the
optical flow for both RGB and alpha frames, and then calcu-
late the average Euclidean distance between their flow vec-
tors as a measure of misalignment. This approach quanti-
fies the degree to which the RGB and alpha channels align
in terms of motion.

Pseudo Code Overview:

1. Load consecutive RGB and alpha frames from the in-
put video.

2. Convert the frames to grayscale for optical flow com-
putation, as optical flow is typically calculated on inten-
sity values.

3. Compute optical flow using the Farneback method
(cv::calcOpticalFlowFarneback) for both the
RGB and alpha frames.

4. Calculate the Euclidean distance between the RGB
and alpha flow vectors for each pixel.

5. Average the differences across all pixels and frames to
obtain the final optical flow difference.

The average optical flow difference provides a quantita-
tive metric for evaluating the alignment between RGB and
alpha channels, helping to ensure that both modalities ex-



hibit consistent motion.

5. Video Results

For all video results shown in the main paper, please see the
attached HTML source files.

6. Additional Visual Results

In addition to the video results in the main paper, we pro-
vide more generated results in the supplementary files, in-
cluding various objects and visual effects. Please find the
corresponding results in the supplementary files.
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