
Traversing Distortion-Perception Tradeoff using a Single Score-Based
Generative Model

Supplementary Material

In this supplementary material, we first provide the approximation for the reverse posterior p(xk|xk+1,y) [29] and its
connection to conditional score in Appendix A. Then we prove Theorem 1 and 2 in Appendix B and C respectively. Appendix
D provides the derivation of posterior distribution and MMSE for the mixture Gaussian case. Finally, the experimental details
and more results on two-dimensional datasets and the FFHQ dataset are included in Appendix E.

A. Approximation of Reverse Posterior Distribution

In this section, we will first include the deviation of posterior mean and variance in [29] for self-contained. We will use a
modified proof to reveal the relationship between the posterior mean and conditional score.

With the Bayes’ rule, we have for VP-diffusion

p(xk|xk+1,y) =
p(xk+1|xk)p(xk|y)
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)
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We can approximate log p(xk|y) by Taylor’s expansion on point xk+1. When T →∞,

log p(xk|y) ≈ log p(xk+1|y) + (xk − xk+1)
!∇xk+1 log p(xk+1|y) +O(‖xk − xk+1‖2).

Then, (14) can be written as
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where the last step utilizes the equivalent infinitesimal
√
αk =

√
1− βk = 1 − 1

2βk when T → ∞. From (15), we can see
that p(xk|xk+1,y) has mean

µk(xk+1,y) !
1

√
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)
. (16)



For VP diffusion, the expectation and covariance of p(xk|y) can be computed as [29]

µk = Ep(xk|y) [Xk] =

∫
xkp (xk | y) dxk

=

∫
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!
)
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!

= (1− ᾱk) I+ ᾱk Covp(x0|y) [X0] . (18)

Suppose that p(xk|y) = N (µk,Σk), i.e., ∇xk log p(xk|y) = −Σ−1
k (xk − µk). We can obtain an approximation of the

posterior mean µk−1(xk,y) from (16):
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(1− ᾱk−1)I+ ᾱk−1Covp(x0|y)[X0]

)(
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ᾱk−1Ep(x0|y)[X0]

=
(
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which is the mean derived in [29].
We can also utilize the Gaussian assumption to compute the posterior distribution p(xk|xk+1,y) with the following

lemma.

Lemma 3. [2, Section 2.3.3] Given a marginal Gaussian distribution for X and a conditional Gaussian distribution for Y
given X in the form

p(x) = N
(
x | µ,Λ−1) ,

p(y | x) = N
(
y | Ax+ b,L−1

)
,



the marginal distribution of Y and the conditional distribution of X given Y are given by

p(y) = N
(
y | Aµ+ b,L−1 +AΛ−1A!)

p(x | y) = N
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,
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.

Suppose that p(xk|y) = N (µk,Σk), i.e., ∇xk log p(xk|y) = −Σ−1
k (xk − µk). Together with p(xk+1|xk) =

N (
√
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For each parameter Uk, Vk, and Ck, the first expression is used in [29]. The second expression is equivalent when consid-
ering the equivalent infinitesimal

√
1− βk = 1− 1

2βk as T →∞, and will be used in the following proofs for convenience.

B. Proof of Theorem 1
Since pλ(xT−1|xT ,y) = N

(
UT−1xT +VT−1Ep(x0|y)[X0],λCT−1

)
and pλ(xT |y) = N (0, I), from Lemma 3 we have

that

pλ(xT−1|y) = N
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!
T−1

)
.

By simplifying the mean and variance, we have that

µλ
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and we can further simplify the mean and variance as
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)
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)
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Now, let’s prove the general case by induction. For 0 ≤ k ≤ T − 3, suppose that the variance of pλ(xk+1|y) is

Σλ
k+1 = Σk+1

(
λI+ (1− λ)αk+2αk+3 · · ·αTΣ
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)
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)
+Vk+1

)
Ep(x0|y)[X0]
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(1− ᾱT )I+ ᾱT Covp(x0|y)[X0]

)−1Ep(x0|y)[X0]
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)
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)
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·
(
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=
√
ᾱk
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)−1Ep(x0|y)[X0]
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√
ᾱk
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√
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λ
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k
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"
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λ
(
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)
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In particular, when ᾱT → 0, the variance of pλ(x0|y) is

Σλ
0 = Σ0

(
λI+ (1− λ)ᾱTΣ

−1
T−1Σ0

)
→ λCovp(x0|y)[X0],

and the mean is

µλ
0 = (1− ᾱT )

√
ᾱ0

(
(1− ᾱT )I+ ᾱT Covp(x0|y)[X0]

)
Ep(x0|y)[X0]→ Ep(x0|y)[X0].

C. Proof of Theorem 2
Optimality: First, we shall show that there is no loss of optimality in assuming that X̂ is jointly Gaussian with X given y. Let
X̂G be a random variable with the same first and second-order statistics as X̂ , and pX̂G|Y (x̂G|y) be a Gaussian distribution,
i.e., pX̂G|Y (x̂G|y) ∼ N (µ̂y, Σ̂y). Since the first and second-order statistics are the same, we have E[||X − X̂||2] =

E[||X − X̂G||2]. Meanwhile, by [15, Proposition 1.6.5], W 2
2 (pX|Y (x|y), pX̂|Y (x̂|y)) ≥ ||µy − µ̂y||22 + Tr(Σy + Σ̂y −

2
(
Σ

1
2
y Σ̂yΣ

1
2
y

) 1
2 ) = W 2

2 (pX|Y (x|y), pX̂G|Y (x̂G|y)), where W2(p, q) denotes the Wasserstein-2 (W2) distance between two
distributions p and q.

Thus, we can assume that the construction X̂ is jointly Gaussian with X given y. Together with the Markov chain
X − Y − X̂ , i.e., pX,X̂|Y (x, x̂|y) = pX|Y (x|y)pX̂|Y (x̂|y), the optimization problem (11) in Theorem 2 becomes

D(P ) = min
µ̂y,Σ̂y

||µy − µ̂y||22 +Tr(Σy) + Tr(Σ̂y)

s.t. ||µy − µ̂y||22 +Tr
(
Σy + Σ̂y − 2

(
Σ

1
2
y Σ̂yΣ

1
2
y

) 1
2
)
≤ P 2.

Without loss of optimality, we set µ̂y = µy. Consider the KKT condition with dual variable ν:

∇Σ̂y

(
Tr(Σy) + Tr(Σ̂y) + ν

(
Tr

(
Σy + Σ̂y − 2

(
Σ

1
2
y Σ̂yΣ

1
2
y

) 1
2
)))

= I+ νI− νΣ
1
2
y

(
Σ

1
2
y Σ̂yΣ

1
2
y

)− 1
2Σ

1
2
y = 0, (23)

ν
(
Tr

(
Σy + Σ̂y − 2

(
Σ

1
2
y Σ̂yΣ

1
2
y

) 1
2
)
− P 2

)
= 0, (24)

ν ≥ 0. (25)

With (23), we have Σ̂y =
(

ν
1+ν

)2
Σy. Plugging in (24), we have

ν
(
Tr(Σy) +

( ν

1 + ν

)2
Tr(Σy)− 2

( ν

1 + ν

)
Tr

((
Σ

1
2
yΣyΣ

1
2
y

) 1
2
)
− P 2

)
= ν

( 1

(1 + ν)2
Tr(Σy)− P 2

)
= 0.

When P >
√
Tr(Σy), ν should be zero. When P ≤ Tr(Σy), we have ν =

√
Tr(Σy)

P 2 − 1, and the distortion level is

D(P ) = Tr(Σy) +
( ν

ν + 1

)2
Tr(Σy) =

(
1 +

(
1−

√
P 2

Tr(Σy)

)2)
Tr(Σy) = Tr(Σy) +

(√
Tr(Σy)− P

)2
.

In summary, the optimal conditional distortion-perception tradeoff with MSE and W2 constraint is

D(P ) =

{
Tr(Σy) +

(√
Tr(Σy)− P

)2
, for P ≤

√
Tr(Σy)

Tr(Σy), for P >
√
Tr(Σy).

(11)

Achievability: In Theorem 1, we have shown that when ᾱT → 0, the output distribution pλ(x0|y) of the proposed reverse
diffusion process (10) is multivariate Gaussian with variance

Σλ
0 = Σ0

(
λI+ (1− λ)ᾱTΣ

−1
T−1Σ0

)
→ λCovp(x0|y)[X0] = λΣy,

and mean

µλ
0 = (1− ᾱT )

√
ᾱ0

(
(1− ᾱT )I+ ᾱT Covp(x0|y)[X0]

)
Ep(x0|y)[X0]→ Ep(x0|y)[X0] = µy.



Denote the reconstruction associated with λ as Xλ
0 for 0 ≤ λ ≤ 1, and pXλ

0 |Y (x
λ
0 |y) ! pλ(xλ

0 |y). Since both pXλ
0 |Y (x

λ
0 |y)

and pX|Y (x|y) are Gaussian, the Wasserstein-2 distance for two conditional distributions can be computed as

W 2
2 (pX|Y (x|y), pXλ

0 |Y (x
λ
0 |y)) = Tr(Σy) + λTr(Σy)− 2

√
λTr((Σ

1
2
yΣyΣ

1
2
y )

1
2 )

= (1−
√
λ)2 Tr(Σy).

For the distortion, we have

Ep
Xλ

0 ,X|Y (xλ
0 ,x|y)[||X

λ
0 −X||] = Ep

Xλ
0 ,X|Y (xλ

0 ,x|y)[||X||2 + ||Xλ
0 ||2 − 2XXλ

0 ]

= EpX|Y (x|y)[||X||2] + Ep
Xλ

0 |Y (xλ
0 |y)[||X

λ
0 ||2]− 2Ep

Xλ
0 |Y (xλ

0 |y)pX|Y (x|y)[XXλ
0 ]

= µ!
yµy +Tr(Σy) + µλ!

y µλ
y +Tr(Σλ

y )− 2µ!
yµ

λ
y

= (1 + λ)Tr(Σλ
y ).

Thus, the conditional distortion-perception tradeoff given by the scaled reverse diffusion process (10) is

D(λ) = (1 + λ)Tr(Σy),

P 2(λ) = (1−
√
λ)2 Tr(Σy),

which by eliminating λ is equivalent to

D(P ) = Tr(Σy) +
(√

Tr(Σy)− P
)2
, for P ≤

√
Tr(Σy).

Hence, the achieved tradeoff coincides with the optimal tradeoff (11).

D. Derivation of Mixture Gaussian Example
Consider the mixture Gaussian distribution X0 ∼ p(x0) with two components, where

p(x0) = w1 N (µ,σ2
1)︸ ︷︷ ︸

p1(x0)

+w2 N (µ,σ2
2)︸ ︷︷ ︸

p2(x0)

.

The noisy observation is obtained by Y = aX0+σ0ε, where ε ∼ N (0, 1), i.e., p(y|x0) = N (ax0,σ2
0). The joint distribution

of (Y,X0) is

p(y, x0) = p(y|x0)p(x0) = w1 N
([

y,
x0

]
;

[
aµ1,
µ1

]
,

[
a2σ2

1 + σ2
0 , aσ2

1

aσ2
1 , σ2

1

])

︸ ︷︷ ︸
f1(x0,y)

+w2 N
([

y,
x0

]
;

[
aµ2,
µ2

]
,

[
aσ2

2 + σ2
0 , aσ2

2

aσ2
2 , σ2

2

])

︸ ︷︷ ︸
f2(x0,y)

.

Then the marginal distribution of Y is

p(y) = w1 N (aµ1, a
2σ2

1 + σ2
0)︸ ︷︷ ︸

p1(y)

+w2 N (aµ2, a
2σ2

2 + σ2
0)︸ ︷︷ ︸

p2(y)

.

For component f1(x0, y), it is a bivariate Gaussian distribution with marginals as p1(x0) = N (µ1,σ2
1), and p1(y) =

N (aµ1, a2σ2
1 + σ2

0), with correlation ρ = aσ1√
a2σ2

1+σ2
0

.

Then f1(x0, y) can be written as

f1(x0, y) =
1

2πσ0σ1
exp

(
− a2σ2

1 + σ2
0

2σ2
0

[(x− µ1

σ1

)2 − 2
aσ1√

a2σ2
1 + σ2

0

(x− µ1

σ1

)( y − aµ1√
a2σ2

1 + σ2
0

)
+
( y − aµ1√

a2σ2
1 + σ2

0

)2])

= p1(x0|y)p1(y),



where p1(x0|y) = N
(
(µ1

σ2
1
+ ay

σ2
0
)/( a

2

σ2
0
+ 1

σ2
1
), 1/( a

2

σ2
0
+ 1

σ2
1
)
)

and p1(y) = N (aµ1, aσ2
1+σ2

0). Similarly, we can write f2(x0, y)

as p2(x0|y)p2(y) where, p2(x0|y) = N
(
(µ2

σ2
2
+ ay

σ2
0
)/( a

2

σ2
0
+ 1

σ2
2
), 1/( a

2

σ2
0
+ 1

σ2
2
)
)
, and p1(y) = N (aµ2, aσ2

2 + σ2
0).

Then, the posterior distribution of x0 given y can be computed as

p(x0|y) =
p(x0, y)

p(y)
=

w1f1(x0, y) + w2f2(x0, y)

w1p1(y) + w2p2(y)

=
w1p1(x0|y)p1(y) + w2p2(x0|y)p2(y)

w1p1(y) + w2p2(y)

=
w1p1(y)

w1p1(y) + w2p2(y)︸ ︷︷ ︸
a1(y)

p1(x0|y) +
w2p2(y)

w1p1(y) + w2p2(y)︸ ︷︷ ︸
a2(y)

p2(x0|y)

= a1(y)N
( µ1

σ2
1
+ ay

σ2
0

a2

σ2
0
+ 1

σ2
1

,
1

a2

σ2
0
+ 1

σ2
1

)
+ a2(y)N

( µ2

σ2
2
+ ay

σ2
0

a2

σ2
0
+ 1

σ2
1

,
1

a2

σ2
0
+ 1

σ2
1

)
.

Thus, the MMSE estimator is Ep(x0|y)[X0] = a1(y)(
µ1

σ2
1
+ ay

σ2
0
)/( a

2

σ2
0
+ 1

σ2
1
) + a2(y)(

µ2

σ2
2
+ ay

σ2
0
)/( a

2

σ2
0
+ 1

σ2
1
).

E. Experimental Details and More Experimental Results
1. Experimental Details
1.1 Two-dimensional datasets

Here, we list the architecture design and choices of hyperparameters for the two-dimensional datasets.
Network architecture: We use a simple architecture modified from [4]. For the score network, the input point x and the

time index k are fed to an MLP Block, respectively, where each MLP Block is a multilayer perceptron network. Then, we
concatenate the outputs of two MLP Blocks and then feed the concatenated output into a third MLP Blocks. For PSCGAN,
the generator of CGAN is also built upon MLP Blocks. Specifically, the noisy observation y and initial noise z are fed to
an MLP Block respectively, and the concatenated output is fed to another MLP Block. The discriminator of CGAN involves
five linear layers, and leaky Relu is used for the activation function. Note that the number of parameters for the generator and
discriminator are 25682 and 25025, respectively. The total number of parameters for the score network is 26498.

Choices of hyperparameters: We set T = 1000 and a linear schedule from β1 = 10−4 to βT = 0.02. Meanwhile, σ̃k is
set to be βk. For pinwheel dataset, the ζk,λ is set to be 1.2+1.8λ, and for S-curve and moon datasets, ζk,λ is set to be 1+1λ
for all k = 0, 1, · · · , T . For PSCGAN, we follow the setup shown in the original paper [14]

All experiments for two-dimensional datasets were conducted on a single NVIDIA RTX A6000 GPU.

1.2 FFHQ dataset

Here we list the choices of hyperparameters for the FFHQ dataset. Note that the score network for our sampling method was
taken from [5], which was trained from scratch using 49k training data for 1M steps. The pre-trained model for PSCGAN is
taken from the original paper [14]

Choices of hyperparameters: We set T = 1000 and a linear schedule from β1 = 10−4 to βT = 0.02. Meanwhile, σ̃k is
set to be βk

1−ᾱk−1

1−ᾱk
. The choices of {ζk,λ}Tk=0 are heuristic and may be slightly different for different devices to get the best

results. Recall that {ζk,λ}Tk=0 control the weight of the conditional score. Theoretically, if we directly follow Bayes’ rule
and set the weight of∇xkp(xk) and∇xkp(y|xk) to be equal, we can obtain the theoretical value as ζ

′

k = 1−αk
2
√
αkσ2

n
. However,

the choice of ζ
′

k is not practical. Since sθ(xk, k) is usually much larger than ĉ(x̂0) in Algorithm 1, ζ
′

k is too small to reflect
information on the conditional score properly. Thus, we still use the heuristic choices of ζk,λ.

In general, for small λ’s (e.g., ≤ 0.6), the {ζk,λ}Tk=0 need to be set large to get good reconstruction, while for λ close to 1,
small {ζk,λ}Tk=0 leads to better images. Large {ζk,λ}Tk=0 for λ > 0.7 would result in degraded reconstructions. The possible
reason is that for small λ (with less stochasticity), the conditional information becomes more important in constructing a
good image, leading to a greater reliance on the conditional score. When λ is large, too much conditional information may
conflict with the great stochasticity. In this paper, we mainly focus on tuning {ζk,λ}Tk=0 as a function of λ. Thus, {ζk,λ}Tk=0



Table 1. Choices of {ζk,λ}Tk=0 on Gaussian deblurring task with σn = 0.3 for discrete λ’s.

λ = 0 λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.4 λ = 0.5 λ = 0.6 λ = 0.7 λ = 0.8 λ = 0.9 λ = 1

39 24 24 26 26 40 22 18 12 12 6

Table 2. Choices of {ζk,λ}Tk=0 on Gaussian deblurring task with σn = 0.5 for discrete λ’s.

λ = 0 λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.4 λ = 0.5 λ = 0.6 λ = 0.7 λ = 0.8 λ = 0.9 λ = 1

33 33 33 37 40 40 33 23 15 10 6.5

Table 3. Choices of {ζk,λ}Tk=0 on super-resolution task with scale factor 8 for discrete λ’s.

λ = 0 λ = 0.1 λ = 0.2 λ = 0.3 λ = 0.4 λ = 0.5 λ = 0.6 λ = 0.7 λ = 0.8 λ = 0.9 λ = 1

26 24 24 24 30 24 20 15 12 12 10

is a constant for all k and y. It is possible to further tune the parameters as a function of k or ‖y −A(x0)‖22 [5]. In practice,
the choices in Table 1 , 2 and 3 could be considered for discrete λ ∈ {0, 0.1, · · · , 1}.

For PSCGAN and DiffPIR, we use the hyperparameters according to the suggested values in the respective papers. All
experiments are conducted on a single NVIDIA A100 GPU.

2. More Experimental Results
2.1 Two-dimensional datasets

We provide additional experiments on two-dimensional datasets, including more data distributions and validation of adjusting
the variance scale.

More data distributions: Other than pinwheel data points shown in Section 4.1, we illustrate the results on S-curve
and moon-type data distributions. Fig. 9 shows the original distributions, noisy distributions, as well as the reconstructions
for each dataset. The numerical DP tradeoffs are depicted in Fig. 10. Similar to the pinwheel case, our score-based method
achieves a much larger range of tradeoffs compared to the GAN-based approach, revealing great effectiveness and optimality.
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N = 16,σz = 1(f) PSCGAN

Original distributions Noisy observations Original distributions Noisy observations

Figure 9. Experiments on the S-curve dataset (left) and Moon dataset (right). The first row illustrates the original distribution and the noisy
observation Y , given by Y = aX +N for N ∼ N (0,σ2

nI) (right). The second and third row shows the reconstructions on each dataset:
(a)-(e) variance-scaled reverse diffusion process with different λ’s; (f) PSCGAN with N = 16,σz = 1.



(a) S-curve (b) Moon

Figure 10. DP tradeoff on S-curve (left) and moon-type (right) datasets traversed by our variance-scaled reverse diffusion process and
PSCGAN.

Figure 11. DP tradeoff on S-curve (left) and moon-type (right) datasets traversed by our variance-scaled reverse diffusion process and
PSCGAN.

Validation of adjusting the variance scale: In the original DPS sampling procedure [7, Algorithm 1], there is a hy-
perparameter ζk controlling the weight that is given to the likelihood ∇xk ||y − A(x̂0(xk))||22, which may also affect the
distortion-perception performance. Theorem 1 and 1 show that the proposed variance-scaled diffusion process serves as the
optimal solution to the DP tradeoff for conditional multivariate Gaussian. In contrast, there is no theoretical guarantee that
adjusting the DPS weight ζl in Algorithm 1 can traverse the optimal DP tradeoff. We conduct a simple experiment on the
pinwheel dataset, which compares the performance of the proposed variance-scaled reverse diffusion process and the DPS
sampling procedure with adjusted ζk. Fig. 11 demonstrates that adjusting ζk for fixed λ = 1 is inferior to our variance-scaled
method and unable to traverse the tradeoff.

2.2 FFHQ dataset

We provide more experimental results on the FFHQ dataset, including the effect of increasing stochasticity, more metrics,
and more examples.

Increasing stochasticity: It is observed in the mixture Gaussian example (Section 3.4) that for λ = 0, the trajectories are
deterministic and converge to the MMSE point given an initial xT . When λ increases, the generated trajectories follow the
form of the posterior distribution and show more stochasticity. This phenomenon can also be observed in real-world datasets.
As shown in Fig. 12, the reconstructions show more stochasticity with λ increasing. Specifically, details such as hairs, eye
expressions, and the shape of the mouth exhibit more variations. The images become sharper with the increase in MSE.

More metrics: We report more metrics of Gaussian deblur task with additive noise of σn = 0.3 on FFHQ dataset,



Figure 12. Multiple samples with different λ’s. As λ increases, the reconstructions show more stochasticity, and the MSE increases.

Metrics Ours PSCGAN DiffPIR
λ = 0 λ = 0.3 λ = 0.5 λ = 0.8 λ = 1 N = 1 N = 64

PSNR↑ 25.27 24.93 24.80 24.47 24.40 22.10 24.39 22.73
LPIPS↓ 0.368 0.337 0.329 0.312 0.263 0.304 0.350 0.262

Table 4. Quantitative evaluation (PSNR, LPIPS) of Gaussian deblur task with additive noise of σn = 0.3 on FFHQ dataset.

including PSNR for distortion and LPIPS [30] for perception measure. It can be shown in Table 4 that when λ increases,
PSNR becomes worse while LPIPS becomes better. This phenomenon coincides with the results of MSE and FID, indicating
that the proposed method can effectively traverse the tradeoff between distortion and perception.

More examples for different tasks: Fig. 13 shows more samples from the FFHQ dataset on the Gaussian deblurring
task. We test the methods on different noise levels. Note that the PSCGAN is trained on σn = 0.3. We can see that with a
single score network, our method can robustly traverse DP on different noise levels. The PSCGAN trained on σn = 0.3 fails
to generate valid images when σn = 0.5. More examples of the super-resolution task are shown in Fig. 14.



Figure 13. More examples on FFHQ dataset of Gaussian deblurring for both σn = 0.3 and σn = 0.5. Note that for each method, we
use the same pre-trained model for both noise levels. With a single score network, our method can robustly traverse DP on different noise
levels. The PSCGAN trained on σn = 0.3 fails to generate valid images when σn = 0.5.



Figure 14. More examples on FFHQ dataset of super-resolution with downsampling scale 8.
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