
Uncertainty Meets Diversity: A Comprehensive Active Learning Framework for
Indoor 3D Object Detection – Supplementary Materials

Jiangyi Wang, Na Zhao*

Singapore University of Technology and Design (SUTD)
wangjiangyi0519@gmail.com, na zhao@sutd.edu.sg

In the supplementary materials, we first provide the the-
oretical derivation of Eq. 9 in the main paper in Sec. 1, to
support the new formulation in Eq. 10. We also provide
more details of our method, along with ablation studies to
validate the effectiveness, see Sec. 2. Finally, additional
quantitative and qualitative results are provided in Sec. 3.

1. Theoretical Derivation
In the main paper, we directly apply the theoretical deriva-
tion of Eq. 9. In this section, we prove that given S disjoint
partitions {Dr,s}Ss=1 of the r-th selected dataset Dr, i.e.,
∪S
s=1Dr,s = Dr, the following equation holds, up to a con-

stant c:

E(h(Dr)) + β||h(Dr)||1

c
=

S∑
s=1

{ Ns

Ntotal
E(h(Dr,s)) + β||h(Dr,s)||1}+O(

Ninter

Ntotal
),

(1)
where h(Dr,s) represents the histograms of all objects in
s-th partition Dr,s, Ns and Ntotal are the number of objects
in the s-th partition Dr,s and selected labeled samples Dr,
Ninter is the number of objects that share the same proto-
types but belong to different partitions, and O(·) is the Big
O notation from mathematics.

[Proof ] We first represent the prototype histograms
h(Dr) in terms of its entry hm = xm

Ntotal
, i.e.,

h(Dr) = [h1, h2, · · · , hm, · · · , hM ], (2)

where hm and xm indicates the frequency and count of m-th
prototype in Dr, respectively, and M =

∑
c Mc represents

the total number of prototypes. Then, to link with S par-
titions of Dr, we represent hm (xm) as the summation of
hm,s (xm,s), which is the frequency (count) of m-th proto-
type in Dr,s, over all partitions s = 1, 2, ..., S, and identify
the dominant set of prototypes for each partition Dr,s:

Is = {m ∈ {1, 2, ...,M}|s = argmax
s′

hm,s′}. (3)
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Here, we term these prototypes within partition Dr,s as
dominant because each of their frequency hm,s reaches the
maximum across all S partitions. To simplify the proof, for
each prototype index m ∈ Is, we define hm,−s as the sum-
mation of frequencies across all (S − 1) other partitions,
i.e., hm,−s =

∑
s′ ̸=s hm,s′ . Notably, for m ∈ Is, hm,−s is

negligible compared to the dominant term hm,s.

Lemma 1.
∑S

s=1

∑
m/∈Is

O(hm,s) = O(
Ninter

Ntotal
).

[Proof of Lemma 1] Since hm,s =
xm,s

Ntotal
, it is equivalent

to show that
∑S

s=1

∑
m/∈Is

O(xm,s) = O(Ninter). From
the definition of Ninter that it represents the number of all
intersecting prototypes across different partitions, we have:

Ninter =

M∑
m=1

max
s:m/∈Is

(xm,s). (4)

From the pigeonhole principle, we ensure that there must
exist one pair of (m0, s0) such that, xm0,s0 ≥ 1/M ·Ninter,
and m0 /∈ Is0 , implying that:

S∑
s=1

∑
m/∈Is

xm,s ≥
1

M
·Ninter. (5)

Furthermore, we have the inequality from the other side:

S∑
s=1

∑
m/∈Is

xm,s =

M∑
m=1

∑
s:m/∈Is

xm,s

≤
M∑

m=1

|{s ∈ {1, ..., S}|m /∈ Is}| max
s:m/∈Is

(xm,s)

≤ S ·Ninter.
(6)

We have shown
∑S

s=1

∑
m/∈Is

xm,s is bounded by some
constant multiples of Ninter, as established by Eq. 5
(lower bound) and Eq. 6 (upper bound), proving that∑S

s=1

∑
m/∈Is

O(xm,s) = O(Ninter).
□



Lemma 2.
∑S

s=1

∑
m∈Is

O(hm,−s) = O(
Ninter

Ntotal
).

[Proof of Lemma 2] We prove Lemma 2 by applying
Lemma 1 intermediately, which is shown as:

S∑
s=1

∑
m∈Is

O(hm,−s) =

M∑
m=1

∑
s:m∈Is

∑
s′ ̸=s

O(hm,s′)

=

M∑
m=1

∑
s:m/∈Is

O(hm,s)

=

S∑
s=1

∑
m/∈Is

O(hm,s).

(7)

In Lemma 1, it has
∑S

s=1

∑
m/∈Is

O(hm,s) = O(Ninter
Ntotal

). By
applying this result to Eq. 7, Lemma 2 directly holds.

□

Proposition 1. E(h(Dr)) =
∑S

s=1

Ns

Ntotal
E(h(Dr,s)) +∑S

s=1

Ns

Ntotal
log(

Ns

Ntotal
) +O(

Ninter

Ntotal
).

[Proof of Proposition 1] Firstly, we use the definition of
entropy on h(Dr) = [h1, h2, · · · , hM ]. Since {Is}Ss=1

forms a partition of {1, 2, ..,M}, the summation over the
M prototypes can be equivalently expressed as the summa-
tion over all elements in Is across different partitions:

E(h(Dr)) =

M∑
m=1

hm log(hm)

=

S∑
s=1

∑
m∈Is

hm log(hm).

(8)

Then, using the definition of hm,−s, we can express hm as
hm = hm,s + hm,−s, and apply Taylor expansion [2] to
Eq. 8, expanding it around hm,s:

E(h(Dr)) =

S∑
s=1

∑
m∈Is

(hm,s + hm,−s) log(hm,s + hm,−s)

=

S∑
s=1

∑
m∈Is

hm,s log(hm,s) +

S∑
s=1

∑
m∈Is

O(hm,−s)

=

S∑
s=1

∑
m∈Is

hm,s log(hm,s) +O(
Ninter

Ntotal
).

(9)
Here, the last equation follows directly from Lemma 2.
Subsequently, applying the add-and-subtract technique to

the summation over all m ∈ Is, we first introduce the sum-
mation over m /∈ Is and then subtract it, resulting in:

E(h(Dr))

=

S∑
s=1

{
∑
m∈Is

+
∑
m/∈Is

−
∑
m/∈Is

}hm,s log(hm,s) +O(
Ninter

Ntotal
)

=

S∑
s=1

M∑
m=1

hm,s log(hm,s)−
S∑

s=1

∑
m/∈Is

O(hm,s) +O(
Ninter

Ntotal
)

=

S∑
s=1

M∑
m=1

hm,s log(hm,s) +O(
Ninter

Ntotal
).

(10)
The last equation is derived from Lemma 1. Finally, we
rewrite hm,s as Ns

Ntotal

xm,s

Ns
and simplify Eq. 10 directly:

E(h(Dr))

=

S∑
s=1

M∑
m=1

Ns

Ntotal

xm,s

Ns
log(

Ns

Ntotal

xm,s

Ns
) +O(

Ninter

Ntotal
)

=

S∑
s=1

Ns

Ntotal

M∑
m=1

xm,s

Ns
log(

xm,s

Ns
)

+

S∑
s=1

Ns

Ntotal
log(

Ns

Ntotal
)

M∑
m=1

xm,s

Ns
+O(

Ninter

Ntotal
)

=

S∑
s=1

Ns

Ntotal
E(h(Dr,s)) +

S∑
s=1

Ns

Ntotal
log(

Ns

Ntotal
) +O(

Ninter

Ntotal
).

(11)
□

Proposition 2. ||h(Dr)||1 =
∑S

s=1 ||h(Dr,s)||1 +

O(
Ninter

Ntotal
).

[Proof of Proposition 2] Similar with the proof of Propo-
sition 1, we can simplify the l1-norm as follows:

||h(Dr)||1 =

M∑
m=1

(hm,s + hm,−s)

=

S∑
s=1

∑
m∈Is

hm,s +

S∑
s=1

∑
m∈Is

O(hm,−s)

=

S∑
s=1

M∑
m=1

hm,s +O(
Ninter

Ntotal
) +

S∑
s=1

∑
m/∈Is

O(hm,s)

=

S∑
s=1

||h(Dr,s)||1 +O(
Ninter

Ntotal
).

(12)
□
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Figure 1. Architecture of undetected object number prediction net-
work Θundet. The network consists of three-layer MLPs (128-64-
1), with ‘SoftPlus’ activation function. Furthermore, we present a
novel data augmentation strategy to handle the data scarcity.

Combining both Proposition 1 and Proposition 2, we con-
clude the proof that the following equation holds, up to a
constant c:

E(h(Dr)) + β||h(Dr)||1

c
=

S∑
s=1

{ Ns

Ntotal
E(h(Dr,s)) + β||h(Dr,s)||1}+O(

Ninter

Ntotal
).

(13)
Here, the constant c equals to

∑S
s=1

Ns

Ntotal
log( Ns

Ntotal
).

□

Remark. 3D indoor scenes naturally form distinct clus-
ters based on the histograms of object categories, each of
which is composed of multiple prototypes. To ensure the
resulting clusters are approximately disjoint w.r.t. proto-
type assignment, we apply k-means++ to the histograms of
prototypes. As a result, we have Ninter

Ntotal
→ 0 as Ntotal → ∞,

which guarantees O(Ninter
Ntotal

) → 0. Empirically, for a fixed
budget expansion ratio δ = 6, we observe that Ntotal > 1e4
and Ninter

Ntotal
< 2e-2, which is negligible. Thus, we can decom-

pose the original optimization problem, as defined in Eq. 8
in the main paper, into S sub-problems in Eq. 10 within the
disjoint clusters.

2. Details of Methodology
We provide the details of the methodology due to the space
limit of the main paper, which includes the architecture of
the undetected object number prediction network, and the
algorithm of Class-aware Adaptive Prototype (CAP) bank.

Architecture of undetected object number prediction
network. As shown in Fig. 1, the undetected object num-
ber prediction network, Θundet, is composed of a three-layer
MLP (128-64-1) followed by a ‘SoftPlus’ activation func-
tion to guarantee a positive output. Notably, increasing the
number of MLP layers or the number of parameters per
layer causes the training loss to fluctuate empirically, mak-
ing it difficult for the network to converge. To enhance

Algorithm 1 Class-aware Adaptive Prototype Bank
Input: the unlabeled dataset DU ,

the previous (r − 1)-th labeled dataset Dr−1
L ,

the batch size B,
the similarity threshold τsim (0.3 by default).

Output: the Class-aware Adaptive Prototype (CAP) bank
M = {{µk,c}

Mc

k=1}Cc=1.

1: Initialize the bank M from all objects in Dr−1
L ;

2: for each batch {(Pb,B
∗
b)}Bb=1 in Dr−1

L do
3: for each GT bounding box (b∗

j , y
∗
j ) in B∗

b do
4: Extract feature embedding oj of bounding box b∗

j ,
and update the initial prototype µ1,yk

.
5: end for
6: end for
7: Update the bank M from all objects in DU :
8: for each predicted batch {(Pb,Bb)}Bb=1 in DU do
9: for each predicted bounding box (bj , yj) in Bb do

10: Extract feature embedding oj of predicted bound-
ing box bj .

11: Calculate the IoUj between predicted bounding
box bj and its perturbed version.

12: for k in 1 : Myj do
13: Calculate Sim(oj ,µk,yj

) by Eq. 5.
14: end for
15: Calculate the assignment A(oj) by Eq. 6,

and update {µk,yj
}
Myj

k=1 by Eq. 7.
16: end for
17: end for

CAP bank SUN RGB-D ScanNetV2
mAP@.25 mAP@.50 mAP@.25 mAP@.50

l2-norm 55.6 ↓ 0.5 34.6 ↓ 0.8 60.9 ↓ 0.9 44.3 ↓ 1.6

w/o IoU scores 55.2 ↓ 0.9 34.0 ↓ 1.4 60.1 ↓ 1.7 43.4 ↓ 2.5

Ours 56.1 35.4 61.8 45.9

Table 1. Ablation studies of two key modifications in the Class-
aware Adaptive Prototype (CAP) bank on SUN RGB-D and Scan-
NetV2 datasets.

the generalizability of Θundet, we exploit batch normaliza-
tion [4] and dropout [7] in the network design. We opt
Adam [5] optimizer with default parameters to train the net-
work for 80 epochs with a batch size of 16 and an initial
learning rate of 0.01. The learning rate decays on [40, 60]
epochs with a decay rate of 0.2. Furthermore, due to the
scarcity of training data in the active learning setting, we
design a novel data augmentation techniques specific to this
undetected object number prediction task. As illustrated in
Fig. 1, we randomly mask the predicted boxes from the
‘RoI Refinement’ module to generate different undetected
features ui and undetected object number N (Bi,B

∗
i ) pairs

during the training phase, which encourages the network to
better capture the undetectability within point clouds.



SUN RGB-D ScanNetV2
Methods Sofa Desk Chair Table Bookshelf Sofa Desk Chair Table Bookshelf

RAND 53.57 17.34 71.41 40.27 14.64 85.71 50.12 90.70 54.84 44.55
PPAL 58.82 ↑5.25 19.80 ↑2.46 71.48 ↑0.07 38.27 ↓2.00 20.73 ↑6.09 84.44 ↓1.27 58.54 ↑8.42 91.03 ↑0.33 58.34 ↑3.50 41.12 ↓3.43
KECOR 57.23 ↑3.66 18.91 ↑1.57 70.43 ↓0.98 42.62 ↑2.35 16.01 ↑1.37 85.61 ↓0.10 62.76 ↑12.65 90.25 ↓0.45 57.65 ↑2.81 42.86 ↓1.69

OURS 62.49 ↑8.92 29.15 ↑11.81 77.15 ↑5.74 48.31 ↑8.04 24.38 ↑9.74 85.87 ↑0.16 65.87 ↑15.75 91.18 ↑0.48 58.48 ↑3.64 53.02 ↑8.47

Table 2. Per-class AP@0.25 (%) scores for specific classes on SUN RGB-D and ScanNetV2 datasets with 10% queried point clouds.

Algorithm of Class-aware Adaptive Prototype Bank. We
provide the complete algorithm of Class-aware Adaptive
Prototype (CAP) bank, as depicted in Algo. 1. Compared
to infinite mixture prototypes (IMP) [1] that was proposed
for few-shot learning, we conduct two key modifications to
suite the indoor 3D detection task, which is highlighted in
blue in Algo. 1. Firstly, prior works [8, 9] on active learn-
ing for object detection suggest that cosine similarity bet-
ter captures the relationships between feature embeddings
compared to l2-norm. Therefore, we compute the cosine
similarity between the feature embedding oj and each of the
existing prototypes within the predicted class. Secondly, as
many predicted bounding boxes are inaccurate in the early
active learning stages, we leverage perturbed IoU score to
update the prototypes, mitigating the effects of these invalid
bounding boxes.

As shown in Tab. 1, we ablate these two key modifi-
cations to validate the effectiveness of our CAP bank de-
sign. Empirically, cosine similarity outperforms l2-norm
by 0.5% and 0.9% mAP@.25 on SUN RGB-D [6] and
ScanNetV2 [3], respectively. Moreover, the perturbed IoU
scores are essential for the accurate updates of prototypes,
as their absence results in a 1.7% drop in mAP@0.25 on the
ScanNetV2 dataset.

3. Additional Experimental Results
We provide the additional experimental results, which in-
clude per-class average precision (AP) evaluation and visu-
alizations on SUN RGB-D and ScanNetV2 datasets.

Per-class AP evaluation. Tab. 2 reports per-class AP scores
for classes with high intra-class variances. Previous strate-
gies (e.g., KECOR) fail to consistently enhance the detec-
tion performance of all classes compared to random base-
line (see ‘Chair’ class in Tab. 2), as they do not account for
the varying intra-class variances across object categories.
In contrast, our approach demonstrates substantial perfor-
mance improvements across all classes, validating the ef-
fectiveness of our design that jointly optimizes intra-class
variances and scene-type diversity.

Visualization. Fig. 2 and Fig. 3 present additional quali-
tative results on SUN RGB-D and ScanNetV2 datasets, re-
spectively. As depicted in Fig. 2, heavy occlusion (e.g., the
chair near the window in the first row) and partial visibil-
ity (e.g., the red sofa in the second row) complicate accu-

rate detection on the SUN RGB-D dataset, especially when
only 10% of the labeled data is used for training. With-
out referring to the associated images, some of the point
clouds are even challenging for humans to correctly recog-
nize, such as the table in the second row and the chair in the
bottom-left corner in the fifth row, both of which are par-
tially visible. Nevertheless, it is notable that our proposed
method successfully detects most of the objects in these
challenging scenarios. Furthermore, our model is able to
recognize some unannotated objects, such as the rightmost
cabinet near the bed in the fourth row and the table in the
fifth row.

In Fig. 3, we further show four visualization examples
from the ScanNetV2 dataset, covering various scenarios
such as conference room, office, and kitchen. The ran-
dom sampling method struggles to recognize objects with-
out strong geometric cues (e.g., doors, windows) due to the
limited data. In contrast, our proposed method successfully
detects most of these challenging objects, such as the left-
most windows in the first row and fourth rows, the door in
the second row, and the refrigerators in the third row. These
superior detection results indicate that our proposed uncer-
tainty and diversity criteria effectively capture the most in-
formative and representative samples within the indoor 3D
datasets, thereby guiding the model to achieve better local-
ization of 3D bounding boxes.
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Figure 3. Additional qualitative comparisons between random sampling and our proposed active learning method on ScanNetV2 dataset.
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