
UniGraspTransformer: Simplified Policy Distillation for
Scalable Dexterous Robotic Grasping

Supplementary Material

Figure 1. Illustration of the simulation environment.

A. Implementation Details

A.1. Environment Setup

Initialization. We use Isaac Gym 3.0 [3] to build simu-
lation environments, each containing a table (brown), an
object placed on top (blue), a controllable Shadow Hand
(green) [9], and five surrounding cameras (black), as illus-
trated in Figure 1. The system’s origin is defined at the cen-
ter of the table, where all objects are initially placed. The
Shadow Hand is positioned 0.2 meters above the table cen-
ter, with the goal located 0.3 meters above the table center.

For each object utilized in our project, we randomly drop
it onto the table with arbitrary rotations to generate a dataset
comprising 12K static tabletop poses. This dataset is di-
vided into three subsets for specific purposes: 10K poses
for dedicated policy training, 1K poses for offline trajectory
generation, and 1K poses for evaluation.
Task Definition. The objective is to develop a robust uni-
versal policy capable of controlling the Shadow Hand [9]
to grasp and transport a diverse range of tabletop objects to
a designated midair goal position. Each grasping consists
of 200 execution steps and is deemed successful if the po-
sitional difference between the object and the goal remains
within a predefined threshold by the end of the sequence.
Observation Space. At each simulation step, the obser-
vation space of state-based UniGraspTransformer includes
a 167-d proprioceptive state of the hand, a 24-d represen-
tation of the hand’s previous action, a 16-d object state, a
128-d object visual feature, a 36-d hand-to-object distance,
and a 29-d time embedding, as detailed in Table 1 of the
main paper. During dedicated RL policy training, the 128-
d object visual feature is excluded to enhance training effi-
ciency. For vision-based UniGraspTransformer training, the
original 16-d object state is replaced by the center position
of the partial object point cloud (3-d) and its three principal

Figure 2. Shadow Hand poses. (a) Initial pose at the first frame.
(b) Pre-contact opening pose used in dedicated policy training. (c)
36 selected hand points for computing hand to object distance.

component axes (3×3-d). Additionally, we compute 36 dis-
tances between 36 selected points on the Shadow Hand and
the partial object point cloud, as illustrated in Figure 2(c).
Action Space. The action space comprises motor com-
mands for 24 actuators on the Shadow Hand. The first 6 ac-
tuators manage the wrist’s position and orientation through
applied forces and torques, while the remaining 18 actua-
tors control the positions of the finger joints. The action
values are normalized to a range of -1 to 1 according to the
specifications of the actuators.
Camera Setup. Following a similar approach to UniDex-
Grasp++ [11], five RGBD cameras are mounted around the
table, as illustrated in Figure 1. The cameras are positioned
relative to the table center at coordinates (0.0, 0.0, 0.55),
(0.5, 0.0, 0.15), (-0.5, 0.0, 0.15), (0.0, 0.5, 0.15), and (0.0,
-0.5, 0.15), with their focal points aligned at (0, 0, 0.15). In
the vision-based setting, the depth images captured by these
cameras are fused to generate a scene point cloud, from
which the partial point cloud of the object is segmented.

A.2. Dedicated Policy Training

PPO. Proximal Policy Optimization [8] is a widely used
model-free, on-policy reinforcement learning algorithm that
simultaneously learns a policy and estimates a value func-
tion. We utilize PPO to train dedicated RL policies for each
of the 3,200 objects. Both the policy and value networks are
implemented as 4-layer MLPs with hidden dimensions of
{1024, 1024, 512, 512}. At each simulation step, the policy
network takes the current observation as input and outputs
a 24-d action, while the value network predicts a 1-d value.
The simulation environment then executes the action, up-
dates the observation, and calculates the corresponding re-

ward. The policy and value networks are updated every 16
simulation steps using the collected observations, actions,
values, and rewards. Each dedicated RL policy is trained on
an NVIDIA V100 GPU for a total of 10,000 update itera-
tions, taking approximately 3 hours to complete.
Reward Function. The reward function described in Eq.(1)
of the main paper comprises five components: Rd, Ro, Rl,
Rg , and Rs. These reward components are governed by
a contact flag fc, which indicates whether the hand is in
contact with the object.

The distance reward Rd penalizes the average Chamfer
Distance between the hand points Hi and the object point
cloud Pobj , promoting contact and encouraging the hand to
maintain a secure grasp on the object’s surface. Specifically,
36 points {Hi}36i=1 are selected on the Shadow Hand for this
calculation, as illustrated in Figure 2(c).

Rd = −ωd
1

36

36∑
i=1

ChamferDistance(Hi, Pobj), (1)

where the reward weight ωd is set to 1.0.
The contact flag fc is set to 1 if the average Chamfer Dis-

tance between the hand points and the object point cloud
falls below a predefined threshold λc = 0.06. This is deter-
mined as follows:

fc = 1[
1

36

36∑
i=1

ChamferDistance(Hi, Pobj) < λc],

(2)
where 1[·] denotes the indicator function.

Inspired by DexGraspNet [12], before the contact is es-
tablished, the opening reward Ro penalizes deviations of the
current hand pose q from a predefined opening pose qopen,
as depicted in Figure 2(b). This encourages the hand to re-
main open until it makes contact with the object. The re-
ward is calculated as:

Ro = −ωo ∥ q − qopen ∥2, (3)

where the reward weight ωo is set to 0.1.
Once contact is established, the rewards Rl, Rg , and Rs

are introduced to guide the grasping process:
• Lift reward (Rl): This reward encourages the hand to per-

form a lifting action az along the z axis:

Rl = ωl(1 + az), (4)

where ωl is set to 0.1.
• Goal reward (Rg): This reward penalizes the Euclidean

distance between the object center position xobj and the
target goal position xgoal:

Rg = −ωg ∥ xobj − xgoal ∥2, (5)

where ωg is set to 2.0.

• Success reward (Rs): This reward provides a bonus when
the object successfully reaches the goal position, defined
by a threshold λg = 0.05:

Rs = ωs1[∥ xobj − xgoal ∥2< λg], (6)

where ωs is set to 1.0.

A.3. Grasp Trajectory Generation

Our 3,200 dedicated RL policies achieve an average suc-
cess rate of 94.1% across all 3,200 training objects. For
each object, we randomly initialize it in diverse poses and
apply its corresponding RL policy to generate M = 1000
successful trajectories, which are used for offline train-
ing of the UniGraspTransformer model. Each trajectory,
T = {(S1, A1), . . . , (St, At), . . . , (ST , AT)}, consists of
a sequence of steps. Here, At represents robotic action at
timestep-t, and St captures the environment state, includ-
ing proprioception (167-d), previous action (24-d), object
state (16-d), hand-object distance (36-d), and time embed-
ding (29-d), as detailed in Table 1 of the main paper. Addi-
tionally, we save the complete object point cloud (1024×3-
d) and the partial object point cloud (1024×3-d), which are
used to generate object features to train the state-based and
vision-based versions of the UniGraspTransformer model.

A.4. Point Cloud Encoder Training

S-Encoder. To train our S-Encoder, we use a dataset con-
sisting of 3,200 point clouds of seen objects, denoted as
{Pi}3200i=1 , where each Pi represents the canonical point
cloud of a specific object. During each training iteration, a
batch of 100 object point clouds is randomly sampled from
this dataset. For each point cloud in the batch, indexed by
j (j = 1, 2, . . . , 100), the centroid cj is subtracted to center
the point cloud, followed by the application of a random ro-
tation matrix Rj . The resulting transformed point cloud is
expressed as P̂j = Rj (Pj − cj), which serves as input to
the S-Encoder.

The S-Encoder, as part of an encoder-decoder frame-
work [5], processes P̂j to produce a latent feature zj . This
latent feature is then passed to the decoder, which recon-
structs the point cloud, yielding P̃j . The model is trained
by minimizing the reconstruction loss LCD, defined as the
Chamfer Distance between the original transformed point
cloud P̂j and its reconstruction P̃j :

LCD = ChamferDistance(P̂j , P̃j). (7)

The S-Encoder is trained for 800K iterations on an NVIDIA
A100 GPU. After training, the state-based object features
are generated by encoding the complete object point clouds
using the trained S-Encoder.
V-Encoder. The V-Encoder is trained using a knowledge
distillation approach, leveraging the pre-trained S-Encoder

Figure 3. V-Encoder training with distillation.

and the grasp trajectories T generated by the dedicated RL
policies, as illustrated in Figure 3. In each training iteration,
a batch of 100 steps is randomly sampled from the gener-
ated trajectories. Both the complete object point cloud Pt

and the partial point cloud Qt are centered by subtracting
their mean positions. The centered complete point cloud
P̂t is passed through the pre-trained S-Encoder (with frozen
weights), producing a latent feature zSt . Simultaneously,
the centered partial point cloud Q̂t is fed to the V-Encoder,
which outputs both a latent feature zVt and a reconstructed
point cloud Q̃t.

The V-Encoder is optimized using two loss functions:
• Feature Distillation loss (Ldistill): This L2 loss measures

the difference between the latent features produced by the
S-Encoder and the V-Encoder:

Ldistill =∥ zSt − zVt ∥2 (8)

• Reconstruction loss (LCD): This is the Chamfer Distance
between the centered partial point cloud Q̂t and its recon-
struction Q̃t:

LCD = ChamferDistance(Q̂t, Q̃t), (9)

The total loss for training the V-Encoder is defined as:

L = ωCDLCD + ωdistillLdistill, (10)

where the weights are set to ωCD = 1.0 and ωdistill =
0.1. The V-Encoder is trained on an NVIDIA A100 GPU
for 800K iterations. After training, the vision-based object
features are generated by encoding the partial object point
clouds using the trained V-Encoder.

A.5. UniGraspTransformer Training

Input Types. The UniGraspTransformer is trained using
the generated grasp trajectories and encoded object features
under two configurations, as outlined in Table 1:

Input of UniGraspTransformer

State-Based Vision-Based

Proprioception (167) Proprioception (167)
Previous Action (24) Previous Action (24)

Object State (16) Object State* (12)
Object Feature (128) Object Feature* (128)
Hand-Obj. Dist. (36) Hand-Obj. Dist.* (36)

Time (29) Time (29)

Table 1. Input types for state-based and vision-based UniGrasp-
Transformer, organized into six groups.

• State-Based Setting: The complete object point clouds are
assumed to be perfectly accurate and are encoded using
the S-Encoder. Object states, including positions, rota-
tions, and velocities, are directly accessible, as detailed in
Table 1 of the main paper.

• Vision-Based Setting: Partial object point clouds are re-
constructed and segmented from depth data captured by
five cameras mounted above and around the table. These
object features are encoded using the V-Encoder, and ob-
ject states are estimated rather than directly accessed.

The key differences between the inputs for the state-based
and vision-based UniGraspTransformer are:

• For the object state representation, the vision-based set-
ting uses the center of the partial object point cloud (3-d)
as the object position and three principal component axes
(9-d) to represent object orientation.

• The object feature is derived from the partial object point
cloud and encoded using the V-Encoder in the vision-
based setting.

• The hand-object distance is computed using the partial
object point cloud in the vision-based setting.

Training Process. Each trajectory step consists of six
observation groups, as detailed in Table 1, paired with a
ground truth action At. The UniGraspTransformer pro-
cesses these observations as follows: (1) The six observa-
tion groups are converted into six 256-dimensional tokens
using individual single-layer MLPs; (2) These tokens are
passed through 12 self-attention layers [10], producing six
refined 256-dimensional features; (3) The six features are
concatenated into a single 1536-dimensional representation,
which is then processed by a 4-layer MLP to predict the fi-
nal 24-d action Pt. The model is optimized using a single
L2 loss, defined as: L = ||At − Pt||2.

Training is conducted on a dataset of 3,200 objects with
3.2 million trajectories, using a batch size of 800 trajectories
(each with 200 steps) over 100 epochs. The process is car-
ried out on 8 NVIDIA A100 GPUs and takes approximately
70 hours to complete. The average L2 loss at convergence
is around 0.015.

Figure 4. Quantitative analysis of grasp pose diversity.

B. Experiment Details

B.1. Baseline Methods

The implementation of baseline methods listed in Table 2
of the main paper is outlined below. Additional details can
be found in UniDexGrasp++[11].
PPO. This reinforcement learning baseline directly trains
a state-based universal model using PPO with all training
objects. The vision-based universal policy is derived from
the state-based policy through distillation using DAgger [7].
DAPG. Demo Augmented Policy Gradient (DAPG) [6] is a
widely used imitation learning method that leverages expert
demonstrations to reduce RL sampling complexity. In this
baseline, grasp trajectories generated via motion planning
serve as demonstrations to train a state-based deep RL pol-
icy. The vision-based universal policy is then distilled from
the state-based policy using DAgger [7].
ILAD. ILAD [13] enhances the generalization capabilities
of DAPG [6] by introducing an imitation learning objective
focused on the object’s geometric representation. In this
baseline, a pipeline similar to DAPG [6] is implemented.
GSL. Generalist-Specialist Learning (GSL) [2] begins by
training a generalist policy using PPO over the entire task
space. Specialists are then fine-tuned to master each sub-
set of the task space. The final generalist is trained us-
ing DAPG [6], leveraging demonstrations generated by the
trained specialists.
UniDexGrasp. UniDexGrasp [14] decomposes the grasp-
ing task into two stages: static grasp pose generation fol-
lowed by dynamic grasp execution via goal-conditioned re-
inforcement learning. First, an IPDF-based [4] grasp pose
generator is trained using all training objects. An Object
Curriculum Learning protocol is then applied, starting re-
inforcement learning with a single object and gradually in-
corporating similar objects to train a state-based universal
policy. Finally, DAgger [7] is used to distill the state-based
universal policy into a vision-based universal policy.
UniDexGrasp++. UniDexGrasp++ [11] builds on the

Figure 5. Success rates across seen objects.

Generalist-Specialist Learning framework by integrating
geometry-based clustering during specialist training, where
each specialist focuses on a group of geometrically similar
objects. Additionally, it introduces a generalist-specialist
iterative process in which specialists are repeatedly trained
from the generalist, followed by generalist distillation.

C. More Analysis

From Dedicated to Universal. Our 3,200 dedicated RL
policies achieve an average success rate of 94.1% across all
3,200 training objects. In comparison, the UniGraspTrans-
former achieves success rates of 91.2% (88.9%) on 3,200
seen objects, 89.2% (87.3%) on 140 unseen objects from
seen categories, and 88.3% (86.8%) on 100 unseen objects
from unseen categories under the state-based (vision-based)
settings, respectively.

As depicted in Figure 4, the UniGraspTransformer effec-
tively replicates the grasping trajectories generated by the
dedicated RL policies through offline distillation. While
there is a minor performance drop from 94.1% to 91.2%
(88.9%) in the state-based (vision-based) setting, as illus-
trated in Figure 5, the model demonstrates robust general-
ization and efficiency.
Qualitative Results. The progressive online distillation ap-
proach [2] employed in UniDexGrasp++[11] results in a
universal policy that tends to grasp different objects using
similar poses. In contrast, our UniGraspTransformer, uti-
lizing a larger model and an offline distillation framework,
demonstrates the ability to grasp objects of various shapes
with a wide range of diverse poses. This increased diversity
in grasping strategies is further highlighted in Figure 6.
Real-World Deployment. We extend the deployment of
our vision-based UniGraspTransformer to a real-world en-
vironment using the Inspire Hand [1], which features six
active DoFs for its fingers. The training process remains
identical to that used for the Shadow Hand. Demonstration
videos showcasing grasping across 12 distinct objects are
provided in the supplementary materials.

Figure 6. Qualitative analysis of the grasp pose diversity achieved by UniGraspTransformer.

References
[1] InspireRobots. https://inspire-robots.store/

collections/the-dexterous-hands, 2016. 4
[2] Zhiwei Jia, Xuanlin Li, Zhan Ling, Shuang Liu, Yiran Wu,

and Hao Su. Improving policy optimization with generalist-
specialist learning, 2022. 4

[3] Viktor Makoviychuk, Lukasz Wawrzyniak, Yunrong Guo,
Michelle Lu, Kier Storey, Miles Macklin, David Hoeller,
Nikita Rudin, Arthur Allshire, Ankur Handa, and Gavriel
State. Isaac gym: High performance gpu-based physics sim-
ulation for robot learning, 2021. 1

[4] Kieran Murphy, Carlos Esteves, Varun Jampani, Srikumar
Ramalingam, and Ameesh Makadia. Implicit-pdf: Non-
parametric representation of probability distributions on the
rotation manifold, 2022. 4

[5] Charles R. Qi, Hao Su, Kaichun Mo, and Leonidas J. Guibas.
Pointnet: Deep learning on point sets for 3d classification
and segmentation, 2017. 2

[6] Aravind Rajeswaran, Vikash Kumar, Abhishek Gupta, Giu-
lia Vezzani, John Schulman, Emanuel Todorov, and Sergey
Levine. Learning complex dexterous manipulation with deep
reinforcement learning and demonstrations, 2018. 4

[7] Stephane Ross, Geoffrey J. Gordon, and J. Andrew Bagnell.
A reduction of imitation learning and structured prediction
to no-regret online learning, 2011. 4

[8] John Schulman, Filip Wolski, Prafulla Dhariwal, Alec Rad-
ford, and Oleg Klimov. Proximal policy optimization algo-
rithms, 2017. 1

[9] ShadowRobot. https://www.shadowrobot.com/
dexterous-hand-series, 2005. 1

[10] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszko-
reit, Llion Jones, Aidan N. Gomez, Lukasz Kaiser, and Illia
Polosukhin. Attention is all you need, 2023. 3

[11] Weikang Wan, Haoran Geng, Yun Liu, Zikang Shan,
Yaodong Yang, Li Yi, and He Wang. Unidexgrasp++: Im-
proving dexterous grasping policy learning via geometry-
aware curriculum and iterative generalist-specialist learning,
2023. 1, 4

[12] Ruicheng Wang, Jialiang Zhang, Jiayi Chen, Yinzhen Xu,
Puhao Li, Tengyu Liu, and He Wang. Dexgraspnet: A
large-scale robotic dexterous grasp dataset for general ob-
jects based on simulation, 2023. 2

[13] Yueh-Hua Wu, Jiashun Wang, and Xiaolong Wang. Learn-
ing generalizable dexterous manipulation from human grasp
affordance, 2022. 4

[14] Yinzhen Xu, Weikang Wan, Jialiang Zhang, Haoran Liu,
Zikang Shan, Hao Shen, Ruicheng Wang, Haoran Geng, Yi-
jia Weng, Jiayi Chen, Tengyu Liu, Li Yi, and He Wang.
Unidexgrasp: Universal robotic dexterous grasping via
learning diverse proposal generation and goal-conditioned
policy, 2023. 4

