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Supplementary Material

In this supplementary material, we provide more quali-
tative and quantitative results to show the capabilities and
robustness of UniHOPE (Sec. A). In Sec. B, we present the
implementation details and in Sec. C, we discuss the limita-
tions and future work.

A. More Experimental Results
A.1. Qualitative Results
First of all, we present Figs. A to D, which show that Uni-
HOPE is able to handle both hand-only scenario (left
columns) and hand-object scenario (right columns).

Comparison with SOTA Methods. Next, we provide
more qualitative comparisons on the DexYCB (Fig. E),
HO3D (Fig. F), and FreiHAND datasets (Fig. G).

More De-occluded Examples. Furthermore, we present
more de-occluded samples in Fig. H.

A.2. Quantitative Results
Additional Results of Tab. 1. The additional metrics of
Tab. 1 in the main paper are provided in Tab. A. Both the
metrics before & after PA show an overall performance de-
generation of existing HPE/HOPE models when transfer-
ring to apply to the other scenario or testing in the original
scenario even after re-training on both scenes.

Comparison on Other Splits of DexYCB. We provide
the quantitative results of hand pose estimation on the de-
fault “S0” split (same distribution for the training and test
set) and “S1” split with unseen subjects (train/test: 7/2 sub-
jects) of DexYCB in Tab. B and Tab. C, respectively. Our
method achieves the best overall performance, especially in
root-relative metrics.

Comparison on HO3D. The remaining hand metrics on
HO3D are reported in Tab. D. Though HFL-Net [9] and the
combination of H2ONet + HFL-Net achieve better PA re-
sults, our method outperforms them by a large margin in
the metrics after scale-translation only alignment [4], which
takes both the global rotation and hand shape into consid-
eration. We emphasize the importance of global rotation,
since it better reflects the visualization quality, as indicated
by the qualitative comparison results shown in Fig. F.

A.3. Detailed Analysis on Performance
In this work, we explore a new setting to address HPE and
HOPE at once. Applying prior SOTA of HPE/HOPE is

suboptimal, even re-trained on all scenarios, as they lack
specific designs. For hand-only scenes, HOPE methods
are affected by irrelevant object features, even no object is
grasped, yet HPE methods may fail for unseen hand poses.
For hand-object scenes, HOPE methods lack effective de-
signs to handle severe occlusions, while HPE methods do
not utilize object information to enhance performance. Our
approach works better in each scene type. As Fig. I shows:
(a) when the hand reaches out to grasp an object, our grasp-
aware feature fusion reduces the adverse impact of non-
grasped object; (b) for unseen hand poses from FreiHAND,
our generated de-occluded images introduce richer hand
poses to boost performance; (c) our multi-level feature en-
hancement improves robustness under severe object occlu-
sions; and (d) when grasping objects, our method surpasses
HPE methods by leveraging object information. These ob-
servations are consistent with the quantitative performance
in Tab. 2, 5, 6 in the main paper.

A.4. Additional Ablation Studies
To be consistent with the main paper, we conduct all the
ablation studies presented below on DexYCB.

Additional Results of Tab. 7. Since the RHD [22] and
Static Gestures Dataset [1] are utilized to fine-tune the
ControlNet [12], we also conduct an ablation study of
pre-training on these synthetic datasets before training on
DexYCB, using a network structure identical to our baseline
model with the grasp-aware feature fusion module (Row (b)
of Tab. 7 in the main paper). As shown in Tab. F, directly
incorporating synthetic datasets into training leads to a mi-
nor improvement, indicating the limitation caused by the
domain gap between the synthetic and real-world images.
Conversely, our occlusion-invariant feature learning strat-
egy substantially enhances the model performance through
the foundational data prior provided by ControlNet [20] and
the multi-level feature enhancement.

Ablation on Adaptive Control Strength Adjustment.
Control strength (ranging from 0 to 1) is imposed on the
connections between the ControlNet and Stable Diffusion,
controlling the extent to which the output is consistent with
the control signal. We propose to adaptively adjust its value
with MobRecon [3] pre-trained on DexYCB to avoid te-
dious manual tuning. The default control strength employed
in [12] is 0.55. In our work, we empirically select the candi-
date control strengths from {0.25, 0.4, 0.55, 0.7, 0.85, 1.0},
with a similar number of candidates as in [12].
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Figure A. UniHOPE is able to handle both hand-only (left column) and hand-object scenarios (right column). Here, we show more
qualitative results on DexYCB. For each example, the estimation results are rendered from the original (view 1) and another view (view 2)
for clear visualization.
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Figure B. More qualitative results of UniHOPE on DexYCB.
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Figure C. More qualitative results of UniHOPE across hand-only (left column) and hand-object scenarios (right column) on HO3D.
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Figure D. More qualitative results of UniHOPE on HO3D.



HPE Hand-Only Scene Hand-Only → Hand-Object Scene All → Hand-Only Scene All → Hand-Object Scene

J-PE ↓ PA-J-PE ↓ V-PE ↓ PA-V-PE ↓ J-PE ↓ PA-J-PE ↓ V-PE ↓ PA-V-PE ↓ J-PE ↓ PA-J-PE ↓ V-PE ↓ PA-V-PE ↓ J-PE ↓ PA-J-PE ↓ V-PE ↓ PA-V-PE ↓
[14] 12.98 5.21 12.52 5.02 19.60 (-6.62) 7.71 (-2.50) 18.95 (-6.43) 7.42 (-2.40) 13.16 (-0.18) 5.31 (-0.10) 12.70 (-0.18) 5.11 (-0.09) 14.58 6.73 14.10 6.49
[18] 13.34 4.69 13.13 5.05 21.98 (-8.64) 7.13 (-2.44) 21.42 (-8.30) 7.27 (-2.22) 14.14 (-0.80) 4.74 (-0.05) 14.00 (-0.87) 5.35 (-0.30) 15.20 6.35 15.03 6.74
[21] 14.05 5.55 13.51 5.31 18.37 (-4.32) 7.42 (-1.87) 17.54 (-4.03) 6.91 (-1.60) 14.63 (-0.58) 5.62 (-0.07) 13.96 (-0.45) 5.38 (-0.07) 14.88 6.74 14.21 6.45

HOPE Hand-Object Scene Hand-Object → Hand-Only Scene All → Hand-Object Scene All → Hand-Only Scene

J-PE ↓ PA-J-PE ↓ V-PE ↓ PA-V-PE ↓ J-PE ↓ PA-J-PE ↓ V-PE ↓ PA-V-PE ↓ J-PE ↓ PA-J-PE ↓ V-PE ↓ PA-V-PE ↓ J-PE ↓ PA-J-PE ↓ V-PE ↓ PA-V-PE ↓
[5] 17.99 7.68 17.57 7.88 25.10 (-7.11) 7.62 (+0.06) 24.40 (-6.83) 7.88 (-0.00) 18.79 (-1.00) 7.77 (-0.09) 18.35 (-0.78) 7.94 (-0.06) 19.75 7.59 19.26 7.98
[9] 14.61 6.56 14.13 6.33 19.39 (-4.78) 5.96 (+0.60) 18.61 (-4.48) 5.75 (+0.58) 14.77 (-0.16) 6.64 (-0.08) 14.29 (-0.16) 6.41 (-0.08) 13.61 5.20 13.10 5.01

Table A. Full metrics of Tab.1 in the main paper.

Methods All Scenes Hand-Only Scene Hand-Object Scene

J-PE ↓ PA-J-PE ↓ V-PE ↓ PA-V-PE ↓ J-PE ↓ PA-J-PE ↓ V-PE ↓ PA-V-PE ↓ J-PE ↓ PA-J-PE ↓ V-PE ↓ PA-V-PE ↓
HandOccNet [14] 13.04 5.85 12.61 5.65 13.42 5.39 12.95 5.20 12.79 6.15 12.39 5.95
MobRecon [3] 14.34 6.50 13.40 5.74 14.57 5.91 13.74 5.29 14.18 6.88 13.19 6.03
H2ONet [18] 13.89 5.38 13.56 5.52 14.10 4.84 13.75 5.02 13.76 5.73 13.43 5.84H

PE

SimpleHand [21] 13.66 6.02 13.14 5.78 14.48 5.67 13.95 5.46 13.13 6.24 12.62 5.99

Liu et al. [11] 14.06 5.75 13.57 5.58 14.87 5.47 14.33 5.30 13.53 5.93 13.08 5.75
Keypoint Trans. [5] 16.61 6.84 16.21 7.05 18.50 7.03 18.00 7.32 15.39 6.71 15.05 6.88

H
O

PE

HFL-Net [9] 13.02 5.58 12.58 5.39 13.41 5.19 12.92 5.00 12.77 5.84 12.35 5.64

H2ONet† + HFL-Net† 13.08 5.47 12.71 5.43 13.81 4.85 13.50 5.06 12.61 5.87 12.20 5.68
H2ONet‡ + HFL-Net‡ 13.30 5.45 12.91 5.40 14.09 4.85 13.74 5.02 12.79 5.83 12.37 5.64
HandOccNet† + HFL-Net† 13.32 5.73 12.87 5.54 14.40 5.50 13.89 5.30 12.63 5.89 12.22 5.69
HandOccNet‡ + HFL-Net‡ 13.43 5.71 12.97 5.51 14.41 5.49 13.90 5.30 12.80 5.85 12.38 5.65U

ni
fie

d

UniHOPE (ours) 12.59 5.54 12.17 5.36 12.84 5.02 12.38 4.85 12.42 5.88 12.03 5.69

Table B. Quantitative comparison on DexYCB “S0” split.

Methods All Scenes Hand-Only scene Hand-Object Scene

J-PE ↓ PA-J-PE ↓ V-PE ↓ PA-V-PE ↓ J-PE ↓ PA-J-PE ↓ V-PE ↓ PA-V-PE ↓ J-PE ↓ PA-J-PE ↓ V-PE ↓ PA-V-PE ↓
HandOccNet [14] 18.33 6.95 17.70 6.71 19.70 6.01 18.95 5.81 17.57 7.47 17.02 7.21
MobRecon [3] 18.62 7.18 17.73 6.61 19.36 6.27 18.42 5.75 18.21 7.68 17.36 7.09
H2ONet [18] 18.40 6.40 17.90 6.57 18.92 5.44 18.36 5.70 18.11 6.93 17.64 7.05H

PE

SimpleHand [21] 17.38 6.82 16.81 6.73 18.86 6.02 18.14 5.92 16.57 7.26 16.08 7.17

Liu et al. [11] 17.82 6.46 17.19 6.25 19.12 5.89 18.36 5.69 17.10 6.77 16.54 6.55
Keypoint Trans. [5] 21.61 8.15 21.18 8.36 22.84 7.32 22.24 7.59 20.93 8.61 20.60 8.79

H
O

PE

HFL-Net [9] 17.77 6.58 17.16 6.36 18.42 5.72 17.72 5.52 17.41 7.06 16.86 6.82

H2ONet† + HFL-Net† 17.49 6.36 16.94 6.25 19.24 5.50 18.60 5.59 16.54 6.83 16.02 6.61
H2ONet‡ + HFL-Net‡ 17.96 6.48 17.41 6.42 18.92 5.45 18.35 5.69 17.44 7.05 16.89 6.82
HandOccNet† + HFL-Net† 17.84 6.53 17.22 6.31 20.18 5.95 19.39 5.75 16.55 6.85 16.03 6.62
HandOccNet‡ + HFL-Net‡ 18.63 6.73 17.99 6.50 20.72 6.11 19.91 5.91 17.48 7.06 16.93 6.83U

ni
fie

d

UniHOPE (ours) 16.84 6.42 16.25 6.20 17.80 5.50 17.11 5.30 16.31 6.93 15.79 6.70

Table C. Quantitative comparison on DexYCB “S1” split.

To assess the effectiveness of our adaptive control
strength adjustment, we compare our model (Row (c) of
Tab. 7 in the main paper) with the ones trained with gen-
erated samples under fixed control strengths without incor-
porating the feature enhancement constraints. As shown
in Tab. E, our adaptive strategy achieves the best perfor-
mance in hand pose estimation compared to several control
strengths. The samples generated under all candidate con-
trol strengths are provided in Fig. J, showing the need to
adaptively select control strength for different cases.

Effects of Hyperparameters. The default value of hyper-
parameter α is empirically set to 10 in Eq. (11) of the main
paper. This is to ensure a prediction accuracy over 95%. For
the hyperparameters controlling the feature enhancement at

three different levels, we evaluate their effects on the hand
pose estimation performance in Tab. G. Since the MANO-
level feature is a late-stage feature employed to directly
regress the final hand pose, an adaption layer is deployed
to improve the knowledge transfer. We set a larger value
for γMANO to aim to strongly enforce this feature adaptation
process. In our experiments, the values for γinit, γRoI , and
γMANO are set to 0.1, 0.1, and 0.5, respectively.

A.5. Computational Cost and Efficiency

The training time of our model is 3 days for DexYCB (376k
samples) and 12 hours for HO3D (66k samples), respec-
tively, on eight NVidia RTX 2080Ti GPUs.

Tab. H reports the inference speed (FPS, tested on a sin-



Methods Procrustes Alignment Scale-Translation Aligned

J-PE ↓ J-AUC ↑ V-PE ↓ V-AUC ↑ F@5 ↑ F@15 ↑ J-PE ↓ J-AUC ↑
HandOccNet [14] 10.26 7.95 10.21 79.61 50.61 94.47 28.18 49.28
MobRecon [3] 10.47 79.14 10.76 78.54 47.57 93.59 29.36 49.36
H2ONet [18] 9.52 80.97 9.60 80.81 52.62 95.09 29.67 48.53H

PE

SimpleHand [21] 11.28 77.66 11.58 77.05 45.78 91.74 28.41 49.32

Liu et al. [11] 9.46 81.12 9.39 81.25 54.93 95.64 28.44 49.79
Keypoint Trans. [5] 12.00 76.24 12.18 75.83 44.71 91.60 40.00 36.36

H
O

PE

HFL-Net [9] 9.01 82.02 8.92 82.18 57.01 96.19 27.97 51.33

H2ONet† + HFL-Net† 9.49 81.04 9.43 81.16 54.54 95.54 30.60 48.93
H2ONet‡ + HFL-Net‡ 8.97 82.10 8.88 82.26 57.08 96.22 28.00 51.44
HandOccNet† + HFL-Net† 9.56 80.89 9.50 81.02 54.23 95.47 30.29 49.09
HandOccNet‡ + HFL-Net‡ 9.05 81.94 8.96 82.10 56.79 96.14 27.83 51.45U

ni
fie

d

UniHOPE (ours) 9.60 80.82 9.45 81.12 52.57 95.68 25.53 53.70

Table D. Quantitative comparison (Procrustes Alignment & Scale-Translation Aligned) on HO3D.

Control Strength Selection Root-relative Procrustes Align.

J-PE ↓ V-PE ↓ J-PE ↓ V-PE ↓
s = 0.4 13.76 13.30 5.85 5.65
s = 0.55 13.51 13.06 5.78 5.57
s = 0.7 13.43 12.98 5.75 5.55

Adaptive Adjustment (ours) 13.38 12.92 5.71 5.52

Table E. Quantitative results of our adaptive control strength ad-
justment vs. fixed control strengths.

Models Root-relative Procrustes Align.

J-PE ↓ V-PE ↓ J-PE ↓ V-PE ↓
Baseline 13.84 13.37 5.79 5.58w/ Grasp-aware Feature Fusion

w/ RHD [22] & Static Gestures [1] 13.79 13.32 5.73 5.53
Ours 13.03 12.59 5.59 5.40

Table F. Comparison with directly training with synthetic datasets
used by [12].

γinit/ γRoI / γMANO
Root-relative Procrustes Align.

J-PE ↓ V-PE ↓ J-PE ↓ V-PE ↓
0.001 / 0.001 / 0.005 13.17 12.72 5.61 5.41

0.01 / 0.01 / 0.05 13.13 12.69 5.62 5.42
0.1 / 0.1 / 0.5 (ours) 13.03 12.59 5.59 5.40

1.0 / 1.0 / 5.0 13.15 12.70 5.70 5.50
10.0 / 10.0 / 50.0 14.13 13.65 6.08 5.87

Table G. Effects of various hyperparameters of the multi-level fea-
ture constraints.

gle NVidia RTX 2080Ti GPU), FLOPs, and number of pa-
rameters of various models. Thanks to the lightweight ob-
ject switcher in UniHOPE, UniHOPE has similar inference
efficiency and model complexity as HFL-Net [9]. Com-
pared to other SOTA models, UniHOPE has a moderate
model size and running speeds, enabling real-time appli-
cations.

B. Implementation Details

Scene Division. Following [19], the thresholds for RRE
and RTE in grasping label preparation are 5◦ and 10mm,
respectively. An image is categorized into the hand-only
scenes, if determined as non-grasping, otherwise hand-
object scenes. The numbers of samples in the two scenes
are shown in Tab. I. Note that although FreiHAND [23] con-
tains a small number of images interacting with objects in
both training and test sets, it cannot be divided due to the
lack of object annotations.

Generative De-occluder. We adopt the officially-
released pre-trained weights from [12], which fine-tunes
ControlNet with synthetic hand images [1, 22]. The hand-
object mask is obtained by applying dilation on the render
mask of the 3D hand and object to ensure the hand-object
region is covered for repainting. Then, we crop the original
input image in the training set centered on the hand-object
region and resize it to 512×512. The hand-object image
and the hand-object mask are fed into the inpainting Stable
Diffusion model, conditioned by the hand depth map.
Besides, we adopt the positive prompt “a hand grasping
gesture, indoor, in the lab” for image generation from the
two laboratory benchmarks [2, 4], and the negative prompt
is similar to the one in [12]. During inference, the number
of reverse steps for DDIM is set to 50 by default.

Network Structure. (i) Backbone: Following [9], we
adopt ResNet50 [6] as the backbone to extract features from
the input image, in which a dual stream structure is adopted
to relieve the competition between hand features and object
features. (ii) Hand Encoder: The hand encoder takes FOH

as input, first using an hourglass network [13] to regress
a feature map and the heatmap of 2D hand joints. Then,
they are fused via a convolution layer and an element-wise
addition, followed by four residual blocks to yield a 1024-
dimensional vector. (iii) MANO Decoder: It consists of
two fully connected layers to predict the hand pose and



Methods HandOccNet [14] MobRecon [3] H2ONet [18] SimpleHand [21] Liu et al. [11] Keypoint Trans. [5] HFL-Net [9] H2ONet + HFL-Net HandOccNet + HFL-Net Ours

FPS 48 78 62 41 51 33 43 36 30 44

FLOPs 15.48G 0.46G 0.74G 9.96G 39.44G 12.66G 10.01G 0.77G / 10.04G 15.51G / 10.04G 10.04G

# Param. 37.22M 8.23M 25.88M 48.89M 34.48M 52.79M 46.08M 72.26M 83.60M 46.38M

Table H. Efficiency comparison with previous methods. Note that FLOPs for the “A+B” methods depend on the predicted grasping status,
therefore reported as “FLOPs of (classifier + A) / FLOPs of (classifier + B)”.

Datasets (splits) Training Set Test Set

All Scenes Hand-Only Scene Hand-Object Scene All Scenes Hand-Only Scene Hand-Object Scene

DexYCB “S0” 401,507 153,210 248,297 78,768 30,848 47,920
DexYCB “S1” 351,943 138,775 213,168 104,128 36,912 67,216
DexYCB “S3” 376,374 145,051 231,323 76,360 29,912 46,448

HO3D 66,034 5,595 60,439 11,524 2,971 8,553
FreiHAND 130,240 N/A N/A 3,960 N/A N/A

Table I. Number of samples in hand-only/hand-object scenes for different datasets (splits).

shape parameters of the MANO model from the feature pro-
duced by the hand encoder. (iv) Object Decoder: Follow-
ing [9], the feature after RoIAlign from the hand branch is
fused with the one from the object branch through a cross-
attention layer, to enhance the object feature learning. The
fused feature is then forwarded through six convolutional
layers to predict the 2D projections of the 3D object corner
keypoints and corresponding confidence. In testing, the ob-
ject pose is computed by the Perspective-n-Point (PnP) al-
gorithm [8] using the correspondence between the predicted
2D and the original 3D keypoints on the object mesh.

Training Details. Following [9], we perform data aug-
mentation on the training samples, including random scal-
ing (±20%), rotating (±180◦), translating (±10%), and
color jittering (±50%). Our training process consists of two
stages. In the first stage, the de-occluded images are incor-
porated into training without the feature enhancement loss
for 30 epochs to first adapt the model to the domain of the
generated data. In the second stage, the network is addition-
ally supervised by the enhancement constraints between the
image pairs for another 40 epochs under the same setting.

C. Limitations and Future Work

Limitations. Though we are able to predict the grasping
status of unseen objects, the performance of their pose esti-
mation tends to degrade when the object shape/appearance
varies largely, due to the limited object categories in the
training data. Besides, despite being provided in most ex-
isting public benchmarks, the object annotations are lacking
in certain datasets, limiting the applicability of our approach
as they are required for scene division and inpainting masks.

Future Work. To improve the model’s generalizability
towards unseen objects, a promising direction is to utilize
the knowledge prior from the various vision foundation

models [7, 10, 15], which demonstrated remarkable per-
formance in zero-shot scenarios. Another approach that
we are considering for improving the model’s generaliz-
ability is to train on large-scale synthetic data by lever-
aging diffusion models [16, 19] or large language mod-
els [17].
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Figure E. Qualitative comparison between UniHOPE and SOTA HPE/HOPE methods across hand-only/hand-object scenarios in DexYCB
(“S3” split), in which all the grasping objects are unseen during training.
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Figure F. Qualitative comparison between UniHOPE and SOTA HPE/HOPE methods across hand-only/hand-object scenarios in HO3D.
The ground truths are not publicly available.
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Figure G. Qualitative comparison between our method and SOTA HPE/HOPE methods on FreiHAND.
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Figure H. More examples of de-occluded hand images. Note that masks are overlaid on the original image for better visualization, the
actual condition for our generative de-occluder is a binary mask.
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Figure I. Effects of different designs in our pipeline.
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Figure J. The generated images with varying control strengths. Our adaptive strategy (metrics marked in bold) effectively balances fidelity
and consistency.
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