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Appendix
In the Appendix, we provide the following:
• formal definitions of key terms in Appendix A.
• comprehensive implementation details, including archi-

tecture, training losses, and hyperparameters in Ap-
pendix B.

• additional experiments in Appendix C.
• more qualitative examples, including single-view recon-

struction, in Appendix D.
• an expanded review of related works in Appendix E.
• additional discussions in Appendix F.

A. Formal Definitions
In this section, we provide additional formal definitions that
further ground the method section.

The camera extrinsics are defined in relation to the world
reference frame, which we take to be the coordinate system
of the first camera. We thus introduce two functions. The
first function γ(g,p) = p′ applies the rigid transformation
encoded by g to a point p in the world reference frame to
obtain the corresponding point p′ in the camera reference
frame. The second function π(g,p) = y further applies
perspective projection, mapping the 3D point p to a 2D im-
age point y. We also denote the depth of the point as ob-
served from the camera g by πD(g,p) = d ∈ R+.

We model the scene as a collection of regular surfaces
Si ⊂ R3. We make this a function of the i-th input image
as the scene can change over time [77]. The depth at pixel
location y ∈ I(Ii) is defined as the minimum depth of any
3D point p in the scene that projects to y, i.e., Di(y) =
min{πD(gi,p) : p ∈ Si ∧ π(gi,p) = y}. The point at
pixel location y is then given by Pi(y) = γ(g,p), where
p ∈ Si is the 3D point that minimizes the expression above,
i.e., p ∈ Si ∧ π(gi,p) = y ∧ πD(gi,p) = Di(y).

B. Implementation Details
Architecture. As mentioned in the main paper, VGGT
consists of 24 attention blocks, each block equipped with
one frame-wise self-attention layer and one global self-
attention layer. Following the ViT-L model used in DI-
NOv2 [37], each attention layer is configured with a feature
dimension of 1024 and employs 16 heads. We use the of-
ficial implementation of the attention layer from PyTorch,
i.e., torch.nn.MultiheadAttention, with flash attention en-
abled. To stabilize training, we also use QKNorm [23] and
LayerScale [61] for each attention layer. The value of Lay-
erScale is initialized with 0.01. For image tokenization, we

use DINOv2 [37] and add positional embedding. As in [74],
we feed the tokens from the 4-th, 11-th, 17-th, and 23-rd
block into DPT [43] for upsampling.

Training Losses. We train the VGGT model f end-to-end
using a multi-task loss:

L = Lcamera + Ldepth + Lpmap + λLtrack. (1)

We found that the camera (Lcamera), depth (Ldepth), and
point-map (Lpmap) losses have similar ranges and do not
need to be weighted against each other. The tracking loss
Ltrack is down-weighted with a factor of λ = 0.05. We de-
scribe each loss term in turn.

The camera loss Lcamera supervises the cameras ĝ:
Lcamera =

∑N
i=1 ∥ĝi − gi∥ϵ , comparing the predicted cam-

eras ĝi with the ground truth gi using the Huber loss | · |ϵ.
The depth loss Ldepth follows DUSt3R [67] and im-

plements the aleatoric-uncertainty loss [28, 36] weighing
the discrepancy between the predicted depth D̂i and the
ground-truth depth Di with the predicted uncertainty map
Σ̂D

i . Differently from DUSt3R, we also apply a gradient-
based term, which is widely used in monocular depth es-
timation. Hence, the depth loss is Ldepth =

∑N
i=1 ∥ΣD

i ⊙
(D̂i −Di)∥+ ∥ΣD

i ⊙ (∇D̂i −∇Di)∥−α log ΣD
i , where ⊙

is the channel-broadcast element-wise product. The point
map loss is defined analogously but with the point-map un-
certainty ΣP

i : Lpmap =
∑N

i=1 ∥ΣP
i ⊙ (P̂i − Pi)∥+ ∥ΣP

i ⊙
(∇P̂i − ∇Pi)∥ − α log ΣP

i .
Finally, the tracking loss is given by Ltrack =∑M
j=1

∑N
i=1 ∥yj,i − ŷj,i∥. Here, the outer sum runs over

all ground-truth query points yj in the query image Iq , yj,i

is yj’s ground-truth correspondence in image Ii, and ŷj,i

is the corresponding prediction obtained by the application
T ((yj)

M
j=1, (Ti)

N
i=1) of the tracking module. Additionally,

following CoTracker2 [27], we apply a visibility loss (bi-
nary cross-entropy) to estimate whether a point is visible in
a given frame.

Ground Truth Coordinate Normalization. If we scale a
scene or change its global reference frame, the images of the
scene are not affected at all, meaning that any such variant
is a legitimate result of 3D reconstruction. We remove this
ambiguity by normalizing the data, thus making a canoni-
cal choice and task the transformer to output this particular
variant. We follow [67] and, first, express all quantities in
the coordinate frame of the first camera g1. Then, we com-
pute the average Euclidean distance of all 3D points in the
point map P to the origin and use this scale to normalize the
camera translations t, the point map P , and the depth map



D. Importantly, unlike [67], we do not apply such normal-
ization to the predictions output by the transformer; instead,
we force it to learn the normalization we choose from the
training data.

Implementation Details. By default, we employ L = 24
layers of global and frame-wise attention, respectively. The
model consists of approximately 1.2 billion parameters in
total. We train the model by optimizing the training loss (1)
with the AdamW optimizer for 160K iterations. We use a
cosine learning rate scheduler with a peak learning rate of
0.0002 and a warmup of 8K iterations. For every batch,
we randomly sample 2–24 frames from a random training
scene. The input frames, depth maps, and point maps are re-
sized to a maximum dimension of 518 pixels. The aspect ra-
tio is randomized between 0.33 and 1.0. We also randomly
apply color jittering, Gaussian blur, and grayscale augmen-
tation to the frames. The training runs on 64 A100 GPUs
over nine days. We employ gradient norm clipping with a
threshold of 1.0 to ensure training stability. We leverage
bfloat16 precision and gradient checkpointing to improve
GPU memory and computational efficiency.

In more details, to form a training batch, we first choose
a random training dataset (each dataset has a different yet
approximately similar weight, as in [67]), and from the
dataset, we then sample a random scene (uniformly). Dur-
ing the training phase, we select between 2 and 24 frames
per scene while maintaining the constant total of 48 frames
within each batch. For training, we use the respective train-
ing sets of each dataset. We exclude training sequences con-
taining fewer than 24 frames. RGB frames, depth maps,
and point maps are first isotropically resized, so the longer
size has 518 pixels. Then, we crop the shorter dimen-
sion (around the principal point) to a size between 168 and
518 pixels while remaining a multiple of the 14-pixel patch
size. It is worth mentioning that we apply aggressive color
augmentation independently across each frame within the
same scene, enhancing the model’s robustness to varying
lighting conditions. We build ground truth tracks follow-
ing [18, 54, 66], which unprojects depth maps to 3D, repro-
jects points to target frames, and retains correspondences
where reprojected depths match target depth maps. Frames
with low similarity to the query frame are excluded dur-
ing batch sampling. In rare cases with no valid correspon-
dences, the tracking loss is omitted.

Training Data. The model was trained using a large and
diverse collection of datasets, including: Co3Dv2 [44],
BlendMVS [75], DL3DV [33], MegaDepth [30],
Kubric [20], WildRGB [70], ScanNet [13], Hyper-
Sim [45], Mapillary [34], Habitat [56], Replica [53],
MVS-Synth [24], PointOdyssey [80], Virtual KITTI [6],
Aria Synthetic Environments [40], Aria Digital Twin [40],
and a synthetic dataset of artist-created assets similar

to Objaverse [14]. These datasets span various domains,
including indoor and outdoor environments, and encompass
synthetic and real-world scenarios. The 3D annotations
for these datasets are derived from multiple sources,
such as direct sensor capture, synthetic engines, or SfM
techniques [48]. The combination of our datasets is broadly
comparable to those of MASt3R [17] in size and diversity.

C. Additional Experiments
Camera Pose Estimation on IMC We also evaluate using
the Image Matching Challenge (IMC) [26], a camera pose
estimation benchmark focusing on phototourism data. Until
recently, the benchmark was dominated by classical incre-
mental SfM methods [47].

Baselines. We evaluate two flavors of our model: VGGT
and VGGT + BA. VGGT directly outputs camera pose es-
timates, while VGGT + BA refines the estimates using an
additional Bundle Adjustment stage. We compare to the
classical incremental SfM methods such as [32, 47] and
to recently-proposed deep methods. Specifically, recently
VGGSfM [66] provided the first end-to-end trained deep
method that outperformed incremental SfM on the chal-
lenging phototourism datasets.

Besides VGGSfM, we additionally compare to recently
popularized DUSt3R [67] and MASt3R [29]. It is important
to note that DUSt3R and MASt3R utilized a substantial por-
tion of the MegaDepth dataset for training, only excluding
scenes 0015 and 0022. The MegaDepth scenes employed
in their training have some overlap with the IMC bench-
mark, although the images are not identical; the same scenes
are present in both datasets. For instance, the MegaDepth
scene 0024 corresponds to the British Museum, while the
British Museum is also a scene in the IMC benchmark. For
an apples-to-apples comparison, we adopt the same training
split as DUSt3R and MASt3R. In the main paper, to ensure
a fair comparison on ScanNet-1500, we exclude the corre-
sponding ScanNet scenes from our training.

Results. Table A contains the results of our evaluation. Al-
though phototourism data is the traditional focus of SfM
methods, our VGGT’s feed-forward performance is on par
with the state-of-the-art VGGSfMv2 with AUC@10 of
71.26 versus 76.82, while being significantly faster (0.2
vs. 10 seconds per scene). Remarkably, VGGT outper-
forms both MASt3R [29] and DUSt3R [67] significantly
across all accuracy thresholds while being much faster. This
is because MASt3R’s and DUSt3R’s feed-forward predic-
tions can only process pairs of frames and, hence, require a
costly global alignment step. Additionally, with bundle ad-
justment, VGGT + BA further improves drastically, achiev-
ing state-of-the-art performance on IMC, raising AUC@10
from 71.26 to 84.91, and raising AUC@3 from 39.23 to
66.37. Note that our model directly predicts 3D points,



Figure A. Single-view Reconstruction by Point Map Estimation. Unlike DUSt3R, which requires duplicating an image into a pair, our
model can predict the point map from a single input image. It demonstrates strong generalization to unseen real-world images.

Figure B. Additional Visualizations of Point Map Estimation. Camera frustums illustrate the estimated camera poses. Explore our
interactive demo for better visualization quality.

which can serve as the initialization for BA. This eliminates
the need for triangulation and iterative refinement of BA as
in [66]. As a result, VGGT + BA is much faster than [66].

D. Qualitative Examples

We additionally present qualitative examples in Fig. B,
along with single-view reconstruction results in Fig. A.

E. Related Work

In this section, we discuss additional related works.

Vision Transformers. The Transformer architecture was
initially proposed for language processing tasks [5, 15, 63].
It was later introduced to the computer vision community
by ViT [16], sparking widespread adoption. Vision Trans-
formers and their variants have since become dominant
in the design of architectures for various computer vision



Method Test-time Opt. AUC@3◦ AUC@5◦ AUC@10◦ Runtime

COLMAP (SIFT+NN) [47] ✓ 23.58 32.66 44.79 >10s
PixSfM (SIFT + NN) [32] ✓ 25.54 34.80 46.73 >20s

PixSfM (LoFTR) [32] ✓ 44.06 56.16 69.61 >20s
PixSfM (SP + SG) [32] ✓ 45.19 57.22 70.47 >20s
DFSfM (LoFTR) [22] ✓ 46.55 58.74 72.19 >10s

DUSt3R [67] ✓ 13.46 21.24 35.62 ∼ 7s
MASt3R [29] ✓ 30.25 46.79 57.42 ∼ 9s
VGGSfM [66] ✓ 45.23 58.89 73.92 ∼ 6s

VGGSfMv2 [66] ✓ 59.32 67.78 76.82 ∼ 10s

VGGT (ours) ✗ 39.23 52.74 71.26 0.2s
VGGT + BA (ours) ✓ 66.37 75.16 84.91 1.8s

Table A. Camera Pose Estimation on IMC [26]. Our method
achieves state-of-the-art performance on the challenging pho-
totropism data, outperforming VGGSfMv2 [66] which ranked first
on the latest CVPR’24 IMC Challenge in camera pose (rotation
and translation) estimation.

tasks [3, 8, 41, 71], thanks to their simplicity, high capacity,
flexibility, and ability to capture long-range dependencies.

DeiT [60] demonstrated that Vision Transformers can be
effectively trained on datasets like ImageNet using strong
data augmentation strategies. DINO [7] revealed intriguing
properties of features learned by Vision Transformers in a
self-supervised manner. CaiT [61] introduced layer scaling
to address the challenges of training deeper Vision Trans-
formers, effectively mitigating gradient-related issues. Fur-
ther, techniques such as QKNorm [23, 76] have been pro-
posed to stabilize the training process. Additionally, [72]
also explores the dynamics between frame-wise and global
attention modules in object tracking, though using cross-
attention.

Camera Pose Estimation. Estimating camera poses from
multi-view images is a crucial problem in 3D computer vi-
sion. Over the last decades, Structure from Motion (SfM)
has emerged as the dominant approach [21], whether in-
cremental [1, 19, 47, 52, 69] or global [2, 9–12, 25, 35,
38, 39, 46, 55]. Recently, a set of methods treat cam-
era pose estimation as a regression problem [31, 50, 57–
59, 62, 64, 65, 68, 78, 79, 81], which show promising results
under the sparse-view setting. Ace-Zero [4] further pro-
poses to regress 3D scene coordinates and FlowMap [51]
focuses on depth maps, as intermediates for camera pre-
diction. Instead, VGGSfM [66] simplifies the classical
SfM pipeline to a differentiable framework, demonstrating
exceptional performance, particularly with phototourism
datasets. At the same time, DUSt3R [29, 67] introduces
an approach to learn pixel-aligned point map, and hence
camera poses can be recovered by simple alignment. This
paradigm shift has garnered considerable interest as the
point map, an over-parameterized representation, offers
seamless integration with various downstream applications,
such as 3D Gaussian splatting.

Input Frames 1 2 4 8 10 20 50 100 200
Time (s) 0.04 0.05 0.07 0.11 0.14 0.31 1.04 3.12 8.75

Mem. (GB) 1.88 2.07 2.45 3.23 3.63 5.58 11.41 21.15 40.63

Table B. Runtime and peak GPU memory usage across differ-
ent numbers of input frames. Runtime is measured in seconds,
and GPU memory usage is reported in gigabytes.

F. Discussions

Limitations. While our method exhibits strong generaliza-
tion to diverse in-the-wild scenes, several limitations re-
main. First, the current model does not support fisheye
or panoramic images. Additionally, reconstruction perfor-
mance drops under conditions involving extreme input ro-
tations. Moreover, although our model handles scenes with
minor non-rigid motions, it fails in scenarios involving sub-
stantial non-rigid deformation.

However, an important advantage of our approach is its
flexibility and ease of adaptation. Addressing these limi-
tations can be straightforwardly achieved by fine-tuning the
model on targeted datasets with minimal architectural modi-
fications. This adaptability clearly distinguishes our method
from existing approaches, which typically require extensive
re-engineering during test-time optimization to accommo-
date such specialized scenarios.

Runtime and Memory. As shown in Tab. B, we evalu-
ate inference runtime and peak GPU memory usage of the
feature backbone when processing varying numbers of in-
put frames. Measurements are conducted using a single
NVIDIA H100 GPU with flash attention v3 [49]. Images
have a resolution of 336× 518.

We focus on the cost associated with the feature back-
bone since users may select different branch combinations
depending on their specific requirements and available re-
sources. The camera head is lightweight, typically account-
ing for approximately 5% of the runtime and about 2% of
the GPU memory used by the feature backbone. A DPT
head uses an average of 0.03 seconds and 0.2 GB of GPU
memory per frame.

When GPU memory is sufficient, multiple frames can be
processed efficiently in a single forward pass. At the same
time, in our model, inter-frame relationships are handled
only within the feature backbone, and the DPT heads make
independent predictions per frame. Therefore, users con-
strained by GPU resources may perform predictions frame
by frame. We leave this trade-off to the user’s discretion.

We recognize that a naive implementation of global self-
attention can be highly memory-intensive with a large num-
ber of tokens. Savings or accelerations can be achieved by
employing techniques used in large language model (LLM)
deployments. For instance, Fast3R [73] employs Tensor
Parallelism to accelerate inference with multiple GPUs,
which can be directly applied to our model.



Patchifying. As discussed in the main paper, we have ex-
plored the method of “patchifying” images into tokens by
utilizing either a 14×14 convolutional layer or a pretrained
DINOv2 model. Empirical results indicate that the DINOv2
model provides better performance; moreover, it ensures
much more stable training, particularly in the initial stages.
The DINOv2 model is also less sensitive to variations in
hyperparameters such as learning rate or momentum. Con-
sequently, we have chosen DINOv2 as the default method
for patchifying in our model.

Differentiable BA. We also explored the idea of us-
ing differentiable bundle adjustment as in VGGSfM [66].
In small-scale preliminary experiments, differentiable BA
demonstrated promising performance. However, a bottle-
neck is its computational cost during training. Enabling
differentiable BA in PyTorch using Theseus [42] typically
makes each training step roughly 4 times slower, which
is expensive for large-scale training. While customizing a
framework to expedite training could be a potential solu-
tion, it falls outside the scope of this work. Thus, we opted
not to include differentiable BA in this work, but we recog-
nize it as a promising direction for large-scale unsupervised
training, as it can serve as an effective supervision signal in
scenarios lacking explicit 3D annotations.

Single-view Reconstruction. Unlike systems like DUSt3R
and MASt3R that have to duplicate an image to create a
pair, our model architecture inherently supports the input of
a single image. In this case, global attention simply transi-
tions to frame-wise attention. Although our model was not
explicitly trained for single-view reconstruction, it demon-
strates surprisingly good results. Some examples can be
found in Fig. A. We strongly encourage trying our demo for
better visualization.

Normalizing Prediction. As discussed in Appendix B, our
approach normalizes the ground truth using the average Eu-
clidean distance of the 3D points. While some methods,
such as DUSt3R, also apply such normalization to network
predictions, our findings suggest that it is neither necessary
for convergence nor advantageous for final model perfor-
mance. Furthermore, it tends to introduce additional insta-
bility during the training phase.
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