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Supplementary Material

We present additional experimental results and imple-
mentation details, supporting the main paper. We also pro-
vide a demo video and codes in supplementary materials.

Firstly, Sec. 1 provides more details of the pre-trained
vision embedder. Sec. 2 provides further explanations of
the proposed vascular tree scanning algorithm, highlight-
ing the dynamic generation process of the vascular tree.
In Sec. 3, We explain the pre-processing of ITKTubeTK
dataset [4] and Topcow2024 dataset [10] and ISICDM 2020
dataset [5, 8]. Sec. 4 defines 3D blood vessel volume eval-
uation metrics. We discuss the effectiveness of different
loss functions and provide corresponding ablation results in
Sec. 5. Additionally, statistical analyses of 3D volumes are
conducted in Section 6. In Sec. 7, we showcase additional
examples of the vascular synthesis process.

1. Pre-training Vision Embedder
The non-angiography structures are processed using a vari-
ational autoencoder (VAE) to extract latent representations,
resulting in a three-dimensional tensor, zNon-angio, composed
of z-axis slices of the non-contrast vessels. These latent
representations are partitioned into multiple patches. Each
patch is encoded via 2D convolution, producing an embed-
ded feature of size B × L × D, where B is the batch size,
L denotes the number of patches, and D represents the em-
bedding dimension.

To capture global contextual information, global average
pooling (GAP) is applied to the embedded features along
each channel, reducing each channel to a scalar that reflects
its international significance. These scalars are then pro-
cessed through a two-layer multi-layer perceptron (MLP):
the first layer performs dimensionality reduction to cap-
ture nonlinear inter-channel relationships, and the second
restores the dimensionality to match the original channel
count. Using a Sigmoid activation function, the resulting
channel-wise weights are normalized to the range of (0, 1).

The normalized weights are attention masks applied
channel-wise to adjust the embedded features. Specifically,
each embedded feature channel is multiplied by its corre-
sponding weight, yielding weighted feature maps that in-
corporate global contextual information while emphasizing
task-relevant regions in the original non-angiography.

Subsequently, the adjusted embeddings are flattened into
one-dimensional vectors (tokens). These tokens are L2-
normalized and utilized to compute a similarity matrix
across image sequences, optimizing the embedding func-
tion within a contrastive learning framework. These atten-

tion masks and tokens enable the model to capture sub-
tle variations in non-contrast vascular images and pro-
vide an effective conditional representation for synthesizing
contrast-enhanced vascular structures.

2. Vascular Tree Scanning Algorithm
2.1. Preliminaries
The state space models (SSMs) utilize methods similar to
the Kalman filter. It maps the input sequence u(t) to the
output sequence y(t), with the hidden state variable x(t)
representing the internal dynamics of the system. The entire
process can be described as Equation 1-2.

ẋ(t) = Ax(t) +Bu(t), (1)

y(t) = Cx(t) +Du(t), (2)

where x(t) ∈ Rn represents the system’s internal state, ẋ(t)
represents the updated state. The state transition matrixA ∈
Rn×n governs the state evolution, while the input matrix
B ∈ Rn×m describes the influence of the input on the state.
The output matrix C ∈ Rp×n maps the state to the output,
and the feedthrough matrixD ∈ Rp×m represents the direct
input-output relationship.

To improve the efficiency of state space models in han-
dling long sequences, new models such as Structured State
Space Sequence Models (S4) [3], Simplified State Space
Layers for Sequence Modeling (S5) [7], and Selective
Structured State Space Models (S6) [2] have emerged.

S4 introduces a structured decomposition and discretiza-
tion of the A matrix, enhancing computational efficiency in
long-sequence tasks:

xk+1 = Axk +Buk. (3)

S5 enhances adaptability by introducing a learnable
time-scale parameter, ∆, for dynamic adjustment:

xk+1 = eA∆xk +Buk. (4)

S6 introduces a dynamic selection mechanism for the
A matrix, enabling content-based adjustments to prioritize
critical information:

xk+1 = A(xk,uk)xk +Buk. (5)

These methods improve the efficiency and focus of state
space models for long sequences but do not resolve long-
range dependencies in vascular-type structured sequences.
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Figure 1. Schematic diagram illustrating the dynamic update pro-
cess of vascular tree scanning parameters.

2.2. Dynamic Update of Tree Variables
To better model vascular structures in 3D volumes, an
optimization mechanism can be introduced into the con-
tinuous state space framework to serialize 3D blood ves-
sels effectively, as shown in Figure 1. These mecha-
nisms must account for spatial coherence, topological con-
sistency, and long-range dependencies within the vascular
structures. Specifically, leveraging the cross-slice attention
mechanism, as detailed in Section 3.3.2 in the main paper,
allows for capturing the coarse spatial distribution of blood
vessels between adjacent slices using soft masks. This fa-
cilitates the modeling of both the spatial coordinates and the
extension directions of blood vessels through a state transi-
tion matrix A.

Given the spatial distribution of blood vascular char-
acterized by their position p(t) and extension direction
d(t)—the state transition matrix A is defined as follows:

ẋ(t) = A(p(t),d(t))x(t), (6)

where x(t) represents the state of the system.
The input feature map matrixB is modeled as a dynamic

matrix that governs how the input features influence state
updates. It is defined as:

B = B(p(t),d(t))u(t), (7)

where u(t) denotes the input features, p(t) represents the
spatial coordinates of the blood vessels in the 3D slices, and
d(t) captures the direction of vascular extensions, inferred
from the masks.

Thus, the core equation governing the continuous state-
space scanning of 3D vascular structures is expressed as:

ẋ(t) = A(p(t),d(t))x(t) +B(p(t),d(t))u(t). (8)

This formulation enables the integration of spatial struc-
tural characteristics, ensuring a coherent and robust repre-
sentation of 3D blood vessels.

2.3. Node Update Process
In order to better describe the changes in nodes and matri-
ces during the vascular tree update process, we take the state
update of a certain node as an example. The node represen-
tation obtained from the visual encoder (denoted asM ) cor-
responds to the input feature vector for each node. The state
transformation matrix A ∈ RN×N controls the state propa-
gation of each node, determining how information is trans-
mitted from parent nodes to child nodes in the tree structure.
The feature vector B is generated by the input features:

Bi =WB · xi + bB , (9)

where WB ∈ RN×d, bB ∈ RN are the weight and bias,
respectively. The feature vector B is then transformed into
node states for further processing.

The matrices C and D are used to update the transfor-
mations through loss functions. The matrix C is used to
compute the final output transformations, and matrix D is
responsible for the input transformations.

The update process is divided into two stages: the ag-
gregation of the feature information and the transmission of
this information across the tree structure:

S(E[i, j]) =
exp (−ψ · cos(X[i], X[j]))∑

k∈Neigh(i) exp (−ψ · cos(X[i], X[k]))
,

(10)
where S(E[i, j]) represents the edge weight between nodes,
and B[j] and X[j] are the features and state of node j, re-
spectively.

In the tree-like state space model, the state of each node
is influenced by the parent node’s state. The tree structure
propagates states based on hierarchical relationships, and
the aggregation of features follows a sequence of steps as
shown below.

The feature vectors are aggregated through the parent-to-
child transmission process, where the aggregation process
of node i is defined as:

ηi = Bi ·
∂Loss

∂hi
+

∑
j∈Children(i)

ηjAj , (11)

where ηj and Aj are the transformations passed from the
parent node to the child node j.

During the transmission from parent to child, the feature
weights A and B are updated as follows:

A−
i = Ai − λ · ∂L

∂Ai
, (12)

B−
i = Bi − λ · ∂L

∂Bi
, (13)

ηi = A−
i η, ηj = B−

i ηj . (14)



The matrices C and D are updated similarly:

C = C − λ · ∂L
∂C

, (15)

D = D − λ · ∂L
∂D

, (16)

Finally, during the aggregation and transmission process,
the loss function is computed as:

Lscan =
∑
i

1

2
∥ηi∥2. (17)

3. Datasets
This study performs a series of experiments on brain and
lung vascular data. The brain vascular data sets include the
ITKTubeTK dataset [4] and the Topcow2024 dataset [10],
while the lung vascular data comes from the ISICDM 2020
dataset [5, 8]. The specific parameters of the datasets are
shown in Tab. 1.
ITKTubeTK Dataset. This dataset is a publicly available
resource for analyzing healthy brain structures using MRI,
from CASILab of the University of North Carolina. It in-
cludes high-quality data from 100 healthy subjects, evenly
distributed across five age groups (18 ∼ 29, 30 ∼ 39,
40 ∼ 49, 50 ∼ 59, ≥ 60), with balanced male and fe-
male distributions. Subjects with conditions that could im-
pact brain structure, such as diabetes or head trauma, are
excluded. Demographic information, including age, sex,
and handedness, is also recorded. Some participants are ex-
cluded due to claustrophobia or motion artifacts.

The dataset includes T1, T2, Time-of-Flight MRA
(TOF-MRA), and Diffusion Tensor Imaging (DTI) acquired
under standardized protocols using a 3T MRI scanner. The
voxel sizes are 1×1×1mm3 for T1 and T2, 0.5×0.5×0.8
mm3 for TOF-MRA, and 2×2×2mm3 for DTI, providing
high-resolution images suitable for detailed analysis. Data
is stored in the metaImage format (.mha).
Topcow 2024 Dataset. This dataset is a publicly avail-
able resource design for brain vascular analysis, includ-
ing high-resolution 3D reconstructions from both MRI and
CT scans. The dataset features a voxel size of 1.0 ∼ 1.5
mm isotropic resolution and matrix sizes typically around
256×256×256. It contains detailed vascular imagery, ideal
for segmentation and modeling tasks, and includes metadata
with specific scanning parameters such as slice thickness
and acquisition angles. The images were captured using
clinical scanners from Siemens and Philips and are stored
in metaImage (.mha) format for compatibility with medical
imaging software.
ISICDM 2020 Dataset. This dataset is for pulmonary vas-
cular analysis, comprising 10 pulmonary CT and 15 pul-
monary CTA series. The dataset includes high-resolution

3D images with 204 to 536 slices per series, normalized
voxel spacing of 1 mm, and a 512× 512 pixels resolution.
All images are stored in Nifti format for compatibility.
Data Preprocessing Procedures. To prepare the origi-
nal 3D blood vessel volume dataset for analysis, redun-
dant slices from the top and bottom were evenly removed
to retain the central region of interest. The resulting vol-
umes were subsequently cropped to a standardized size of
128×448×448. Additionally, a subset of more reliable data
was selected from the original dataset for experimental pur-
poses. The specific data identifiers used in the experiments
are detailed in Tab. 1.

Smapped = 10× Sraw − Smin

Smax − Smin
(18)

The resulting map score indicates the degree of structural
similarity, where higher scores reflect more consistent con-
nectivity. This metric provides a robust, quantifiable means
of comparing vascular modeling techniques.

4. Metrics
Dice Score. The Dice Score, also known as the Dice coef-
ficient, is a widely used metric for evaluating the similarity
between two sets or volumes. It is defined as the ratio of
twice the volume of the intersection of the two sets to the
sum of their individual volumes. Mathematically, it is ex-
pressed as:

8SDice =
2× |A ∩B|
|A|+ |B|

, (19)

where A and B represent the two volumes, and |A ∩ B|
denotes the volume of their intersection. The Dice coeffi-
cient ranges from 0 to 1, with 1 indicating perfect overlap
and 0 indicating no overlap. In the context of 3D vascular
analysis, the Dice Score is used to assess the spatial overlap
between the synthetic and real vascular structures. A high
Dice Score implies a high degree of morphological similar-
ity between the two vascular volumes, indicating that the
synthetic blood vessel closely mimics the real one in terms
of shape and size.
Jaccard Score. The Jaccard Index is another metric used
to quantify the similarity between two sets, but it focuses
on the ratio of the intersection to the union of the sets. It is
defined as:

SJaccard =
|A ∩B|
|A ∪B|

, (20)

where |A ∪ B| is the volume of the union of the two sets,
and |A ∩ B| is the volume of their intersection. Similar
to the Dice Score, the Jaccard Index ranges from 0 to 1,
with higher values indicating better overlap. The Jaccard
Index is particularly useful in 3D vascular analysis to eval-
uate the spatial consistency of vascular structures. A high
Jaccard Score indicates that the synthetic and real vessels



Datasets Voxel Size (mm3) Matrix Size Scanning Parameters Scanner Dataset size

ITKTubeTK [4] 0.5× 0.5× 0.8 448× 448× 128
TR/TE (ms): 35/3.56,

Flip Angle: 22◦ 3T
T2:87

T1-MPRage:51
T1-Flash:88

Topcow 2024 [10] 1.0 - 1.5 256× 256× 256 55 55 85
ISICDM 2020 [5, 8] 1 512× 512× 512 55 55 10

Table 1. Overview of datasets used in the study. Voxel size, matrix size, scanning parameters, and scanners for ITKTubeTK, Top-
cow2024, and ISICDM 2020 datasets. Missing information is marked with 55.

Methods
ITKTubeTK Topcow 2024

T1-Flash T2 T1-MPRAGE CTA
PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑ PSNR↑ SSIM↑

VasTSD 29.86 0.9478 29.72 0.9384 29.92 0.9454 27.36 0.9372
w/o LInfoNCE 28.12 0.8976 28.23 0.8847 28.42 0.8875 25.89 0.8735

w/o Ldiff 28.43 0.9214 28.56 0.9062 28.53 0.9125 26.21 0.9015
w/o Lscan 29.16 0.9314 29.25 0.9163 29.25 0.9286 26.57 0.9148

Table 2. Ablations of loss functions. The best and second-best results are highlighted in bold and underlined.

Datasets T ANOVA Pearson corr.T-stat P-value F-stat P-value
T1-Flash -7.59 0.0016 98.4 2.59E-05 0.628

T1-MPRAGE -6.83 0.0012 85.2 2.41E-05 0.592

Table 3. Results of statistical analysis of 3D volumes.

have a large common region relative to their combined size,
reflecting a close structural match between them.
Connectivity Score. In this study, we propose the Con-
nectivity Score to quantify the structural connectivity dif-
ferences between two 3D vascular volumes. The process
begins with thresholding the 3D images to generate binary
masks, where v is the voxel intensity and T is the threshold:

mask(v) =

{
1 if v > T

0 otherwise.
(21)

Connected component analysis is then applied to the bi-
nary masks to identify distinct vascular structures. The
Connectivity Score is calculated based on the mismatched
connected components between the real and synthetic vol-
umes:

Sconnectivity =
∑
i∈C1

∑
j∈C2

I(C1(i) ̸= C2(j)), (22)

where C1 and C2 represent the connected components of
the real and synthetic volumes, respectively, and I(·) is the
indicator function.

To standardize the score, we map the raw Connectivity
Score to a [0, 10] scale using the minimum and maximum
values in the dataset:

5. Ablation Study of Loss Functions
We perform an ablation study on different components of
the loss function to understand their contributions to the
performance of our proposed model. The loss function is
crucial in guiding the optimization process, and its design
significantly affects the model’s ability to generalize and
perform well on unseen data.

We design the ablation experiments by systematically re-
moving or modifying key components of the loss function.
The following variations are evaluated: removal of the In-
foNCE loss, removal of the Denoising loss, and removal of
the Tree-scanning loss.

Experimental results demonstrate that the complete
VasTSD model outperforms all alternatives in angiogra-
phy synthesis tasks, with significantly higher PSNR and
SSIM, highlighting its superior signal fidelity and structural
consistency. Among its components, the vision embedder
LInfoNCE is critical, as its removal causes the largest per-
formance drop, underscoring the importance of pre-trained
embeddings for capturing local and global consistency and
generating coherent vascular structures.

Removing the diffusion loss Ldiff reduces detail qual-
ity and increases blurriness, while eliminating the scan
loss Lscan has minimal impact, with performance remaining
close to the full model. These results emphasize the syner-
gistic design of VasTSD’s loss functions, with LInfoNCE as
the core, complemented by Ldiff and Lscan, which refine de-
tail and local consistency to enhance angiography synthesis.

6. Statistical analyses of 3D volumes
To validate the contribution of individual modules in the
ablation study, comprehensive statistical analyses were per-



formed, including T-tests (assessing inter-group mean dif-
ferences), ANOVA (comparing multi-group means), and
Pearson correlation coefficient (quantifying linear associ-
ations between continuous variables). Experimental re-
sults on both T1-Flash and T1-MPRAGE datasets (Tab. 3)
demonstrated statistically significant inter-group discrepan-
cies with robust ANOVA validation. Additionally, Pearson
correlation coefficient suggested consistent linear relation-
ships across experimental conditions.

7. Example of Angiography Synthesis

In this section, we present more examples of 2D slices and
3D effects of angiography synthesis. In Fig. 2- 4, we pro-
vide a visual comparison between our method and tradi-
tional modality conversion-based methods in synthesizing
2D slices. The classic modality conversion methods includ-
ing cGAN [1], SynDiff [6] and DiffMa [9]. To facilitate the
visualization of 3D effects, we include a demo video which
can be found in supplementary materials.
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Figure 2. Comparison of 2D slices of angiography generated based on T1-Flash.
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Figure 3. Comparison of 2D slices of angiography generated based on T1-MPRage.
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Figure 4. Comparison of 2D slices of angiography generated based on T2.


