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A. Additional Experimental Results
To enhance the visual experience, we strongly encourage
viewing the videos on the website.

A.1. Additional Reconstruction Examples
Fig. 3 presents additional reconstruction examples. By
zooming in, one can observe that our VidTwin effectively
captures intricate details, such as raindrops in the first and
second cases. Moreover, by decoupling structural and dy-
namic motion features, our model excels at preserving rapid
motion dynamics. For example, in the third case, VidTwin
accurately reproduces the light trails of a fast-moving car,
where other baselines fail to do so.

A.2. Additional Decoupling Examples
In Sec. 4.4.1 in the main text, we demonstrated the abil-
ity to separately recover the Structure Latent and Dynam-
ics Latent components. Additional examples are shown
in Fig. 2. Videos generated using Structure Latent predom-
inantly capture primary structures and main objects, while
those generated with Dynamics Latent focus on colors and
rapid movements.

A notable example is observed in the bottom-right case,
where fireworks visible in the first frame disappear in the
second. However, the Structure Latent-generated video re-
tains the fireworks from the first frame, demonstrating that
Structure Latent effectively encodes low-frequency, gradu-
ally evolving information.

We would like to emphasize that our primary objective
is not to completely decouple structure and dynamics, as
this is a challenging problem even for humans. Instead, we
observe potential in reducing temporal redundancy in video
representation. Based on this observation, we designed an
algorithm that strives to decouple video content into these
two spaces. Therefore, the cross-reenactment experiment
was only designed to intuitively demonstrate the roles of
the two latents rather than being specifically optimized for
cross-reenactment videos.

A.3. Additional Cross-Reenactment Examples
Fig. 4 provides further examples of the cross-reenactment
experiments described in Sec. 4.4.1. In these examples, the
generated videos inherit the basic structure from Video A

while incorporating local details and motions from Video
B. Notably, motion patterns such as horizontal movements
and wave-like motions, as seen in the two bottom cases, are
effectively transferred.

A.4. Comparison with Concurrent Baselines
Recent works have explored the field of video autoen-
coders [2, 9, 10, 18, 22]. We observe that most of these
baselines still fall into the category of methods that rep-
resent frames as latent vectors of uniform size, as dis-
cussed in Sec. 1. A comparison between our model
and these baselines is presented in Tab. 2. Notably, our
model achieves performance comparable to state-of-the-art
methods. CogVideoX [18] demonstrates impressive results,
likely due to its large-scale training data. Additionally, even
our highest compression rate model achieves a lower com-
pression rate than other models (typically 0.6% with 8, 8, 4).

B. Additional Analysis for VidTwin

B.1. Definition of Compression Rate and the Trade-
off with Reconstruction Quality.

Differs from the typical representation that uses the down-
sampling factors for height, width, and number of frames
for compression rate, we define it as the ratio between the
dimension of the latent used in the downstream model and
the input video’s dimension. For example, the typical down-
sampling factor (8, 8, 4) with channels 4 corresponds to a
compression rate of 0.65% in our definition. Additionally,
we present the trade-off between compression rate and re-
construction quality in Tab. 3. As shown, lower compres-
sion rates generally result in better reconstruction quality.

B.2. Initial Scalability Exploration
In Sec. 4.3, we described training our architecture at vary-
ing parameter scales and observed consistent performance
improvements with larger models. Tab. 1 summarizes the
configurations of each model, evaluated at the same train-
ing step. The results demonstrate a steady enhancement in
reconstruction quality with increasing model size. In future
work, we plan to explore additional model scales and inves-
tigate potential scaling laws, including exponential trends
and other patterns.
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Table 1. Settings and performance of VidTwin at different scales.

Models Depth Num. Heads Dim. Hidden Num. Params. PSNR SSIM

VidTwin small 12 8 512 126M 24.83 0.683
VidTwin base 16 12 768 335M 26.13 0.732
VidTwin large 16 12 1536 1.3B 27.16 0.751

Table 2. Comparison with other concurrent works.

Models (Comp. Rate) PSNR↑ LPIPS↓
CV-VAE (0.53%) 28.06 0.24
OD-VAE (0.53%) 29.18 0.19

Open-Sora (0.53%) 29.89 0.15
CogVideoX (0.53%) 31.92 0.09

VidTwin (0.20%) 28.14 0.24
VidTwin (0.48%) 30.04 0.15

Table 3. The reconstruction quality of different compression rates.

Compression Rate PSNR↑ LPIPS↓
0.11% 24.41 0.35
0.16% 27.03 0.28
0.20% 28.14 0.24
0.48% 30.04 0.15

Table 4. Subjective evaluation of VidTwin with increased frames
and higher FPS.

Model Sem. ↑ Tempo. ↑ Deta. ↑
VidTwin 4.71 4.62 4.73
w/ 32 frames 4.70 4.53 4.69
w/ 40 fps 4.73 4.64 4.71

B.3. Performance of VidTwin with Increased
Frames and Higher FPS

We selected the same subjective evaluation subset as in Sec.
4.2 and sampled videos with 32 frames and 40 FPS. A new
user study was conducted, and the results are presented
in Tab. 4. The findings indicate that VidTwin maintains
strong performance with an increased number of frames and
a higher frame rate.

B.4. Failure modes of VidTwin
We provide a failure case in Fig. 1, depicting a basket-
ball scene with fast player movements and camera mo-
tion. While the background remains well-preserved, the
fast-moving individuals appear blurred. In terms of compo-

Orig. Recon. S. Latent D. Latent

Figure 1. Failure modes of VidTwin.

nents, the S. Latent captures the background but becomes
blurred for the players, which is expected as it encodes
slowly changing semantic information. The D. Latent cap-
tures the fast-changing players but struggles to accurately
integrate them into the reconstructed video due to their ex-
tremely rapid movement. We plan to address this issue by
pretraining on low-fps videos and fine-tuning on high-fps
videos in future work.

C. Additional Information on Experimental
Settings

C.1. Baselines and Compression Rates
This section provides details on the baselines used in
our evaluation and discusses their compression rates, as
outlined in Sec. 4.2. Notably, MAGVIT-v2 [19],
iVideoGPT [17], and CMD [20] do not offer official code
or pretrained checkpoints. Therefore, we reimplement these
methods based on the descriptions provided in their respec-
tive papers.

MAGVIT-v2 [19]: MAGVIT-v2 employs 3D causal
CNN layers to downsample videos into latents, with a tem-
poral downsampling factor of 4 and spatial downsampling
factor of 8. The latent dimension is set to 5, as reported in
the paper, resulting in a compression rate of:
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Figure 2. Additional examples of decoupling Structure Latent and Dynamics Latent.

EMU-3 [16]: EMU-3 is a generative model proposed by
BAAI1. For our evaluation, we primarily utilize its video
tokenizer, which is based on SBER-MoVQGAN2. This to-
kenizer incorporates two temporal residual layers with 3D
convolutional kernels in both the encoder and decoder mod-
ules, enhancing video tokenization. Similar to MAGVIT-
v2, it achieves a 4× temporal compression and 8×8 spatial
compression. The compression rate, with a latent size of 4,
is calculated in the same manner.

CV-VAE [21] CV-VAE is a video VAE of latent video
models, designed to have a latent space compatible with that
of a given image VAE, such as the image VAE in Stable Dif-
fusion (SD). In terms of compression rate, it matches that of
EMU-3, achieving 4× temporal compression and 8×8 spa-
tial compression.

CMD [20]: CMD decouples video representations into
content frames and motion latents. For a video of size
(c, f, h, w), the content frame has dimensions (c, h, w), and
the motion latent is (d, h+w, f), where d is the dimension
of the motion vector. Based on the settings described in the
paper, the compression rate is:

1

f
+

d(h+ w)

chw
=

1

16
+

2× 224× 32

3× 224× 224
≈ 6.9%.

1https://www.baai.ac.cn/
2https://github.com/ai-forever/MoVQGAN

The primary bottleneck lies in the content frame, and we
hypothesize that longer video clips could reduce the com-
pression rate (though at the potential cost of performance).

iVideoGPT [17]: iVideoGPT employs a conditional VQ-
GAN [3] with dual encoders and decoders. The context
frames 1 : T0 are encoded using N0 tokens, while sub-
sequent frames are encoded with fewer tokens (n), condi-
tioned on the context tokens to capture the essential dynam-
ics. The compression rate is given by:

N0d+ n(T − T0)d

C × T ×H ×W
,

and, based on the information in the paper, we calculate it
as:

2× 162 × 64 + 14× 42 × 64

3× 16× 2562
≈ 1.5%.

C.2. Pseudo DiT for Resource Consumption Evalu-
ation

Our VidTwin model offers a highly compressed latent
space, significantly reducing the resource requirements of
downstream generative models. To validate this, in Sec.
4.4.2, we compare the performance of a generative model
applied to the latent spaces produced by VidTwin and the
baselines.

For a fair comparison, we utilize the same DiT [11] ar-
chitecture in all experiments. The configuration includes 6
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Figure 3. Additional reconstruction cases comparing our VidTwin model with baselines. Zoom in to observe finer details.

layers, 8 attention heads, a hidden dimension size of 512,
and a feed-forward network (FFN) dimension of 2048, re-
sulting in a total of 12,610,560 parameters. Additionally, a
unified patch size of 2 is used for all dimensions.

We calculate the FLOPs using a single sample (batch
size = 1). For memory consumption, we employ the
Adam [6] optimizer and record the maximum GPU mem-
ory usage during training.

D. Implementation Details
D.1. Model Details
As described in Sec. 3.1, our VidTwin adopts an Encoder-
Decoder architecture. Specifically, we utilize a Spatial-

Temporal Transformer [1] backbone. In each block, spatial
attention is first applied to the height and width dimensions,
followed by temporal attention along the temporal dimen-
sion. Temporal attention uses causal masking, ensuring that
earlier frames do not attend to later ones, similar to the con-
figuration in MAGVIT-v2 [19]. We evaluate three different
scales (outlined in Tab. 1) by adjusting the depth, hidden
state dimensions, and other parameters. For spatial dimen-
sions, a patch size of 16 is used for both height and width,
while for the temporal dimension, the patch size is set to 1.

The Q-Former [8], employed for extracting Structure La-
tent components, consists of 6 layers with a hidden dimen-
sion of 64 and 8 attention heads. For downsampling, we
primarily use convolutional layers with a stride of 2, while
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Figure 4. Additional examples of cross-reenactment.

upsampling is performed using Upsample layers with a fac-
tor of 2. By varying the number of convolutional layers,
latents of different sizes can be generated.

Recommended latent size settings are as Tab. 5. From
our experiments, we see that these configurations exhibit
minimal performance differences, allowing users to select a
setting based on specific requirements.

D.2. Data and Training Details
The key hyperparameters for training data and optimization
are summarized as Tab. 6.

D.3. Diffusion Model Details
In Sec. 4.4.3, we describe the design of a diffusion model
tailored to the latent space of our VidTwin model. This
model adopts the DiT [11] architecture with 18 layers and
a hidden state size of 1152. Conditioning is introduced via
cross-attention, and for the UCF-101 dataset [14], we use a
256-dimensional vector to encode the class information.

The diffusion process consists of 1000 steps, with

DDIM [13] used as the sampling strategy and 50 steps for
inference. Classifier-free guidance [4] is applied, where
conditioning is randomly dropped in 20% of the samples
during training. The classifier-free guidance weight is set to
5 during sampling.

For training, we use the Adam optimizer [6] with β1 =
0.9, β2 = 0.999. The learning rate is managed with
a Lambda scheduler and includes 10,000 warmup steps.
Training is conducted on 8 × 40G A100 GPUs, with an in-
put configuration of 16 video frames at a resolution of 224.

E. Basics for Diffusion Models and VAE

E.1. Basics for Diffusion Models

Diffusion models are a class of emerging generative mod-
els designed to approximate data distributions. The train-
ing process consists of two phases: the forward diffusion
process and the backward denoising process. Given a data



Table 5. Recommended settings for latent sizes.

Setting Structure Latent Dynamics Latent

1 hS = wS = 7, nq = 16, dS = 4 hD = wD = 7, dD = 8

2 hS = wS = 7, nq = 16, dS = 4 hD = wD = 4, dD = 16

3 hS = wS = 7, nq = 12, dS = 4 hD = wD = 7, dD = 8

Table 6. Training Configuration

Parameter Value

Input Video Resolution 224

Input Video Frames 16

Input Video FPS 8

Optimizer Adam; β1 = 0.9, β2 = 0.99

Learning Rate 1.6× 10−4

Warmup Steps 5000

Learning Rate Scheduler Cosine Annealing

Lp 0.05

Weight Decay 0.0001

LGAN 0.05

LKL 0.001

Training Batch Size 6

Training Device 4 × 80G A100 GPUs

point sampled from the real data distribution, x0 ∼ q(x)3,
the forward diffusion process gradually adds Gaussian noise
to the sample, generating a sequence of noisy samples
x1, . . . , xT . The noise scales are controlled by a variance
schedule βt ∈ (0, 1), and the density can be expressed as:

q(xt|xt−1) = N (xt;
√

1− βtxt−1, βtI).

Using the reparameterization trick [5], this process al-
lows for sampling at any arbitrary time step in closed form:

q(xt|x0) = N (xt;
√
αtx0,

√
1− αtI),

where αt = 1− βt and αt =
∏t

i=1 αi. From this, it is evi-
dent that as T → ∞, xT converges to an isotropic Gaussian
distribution, aligning with the initial condition used during
inference.

However, obtaining a closed form for the reverse process
q(xt−1|xt) is challenging. When βt is sufficiently small, the

3We follow the notation and derivation process of https://
lilianweng.github.io/posts/2021-07-11-diffusion-
models.

posterior also approximates a Gaussian distribution. In this
case, a model pθ(xt−1|xt) can be trained to approximate
these conditional probabilities:

pθ(xt−1|xt) = N (xt−1;µθ(xt, t),Σθ(xt, t)),

where µθ(xt, t) and Σθ(xt, t) are parameterized by a de-
noising network fθ, such as a U-Net [12] or a Trans-
former [15]. By deriving the variational lower bound to
optimize the negative log-likelihood of x0, Ho et al. [5] in-
troduces a simplified DDPM learning objective:

Lsimple =

T∑
t=1

Eq

[
∥ϵt(xt, x0)− ϵθ(xt, t)∥2

]
,

where ϵt represents the noise added to the original data x0.
In our work, we adopt a simpler architecture that directly
predicts x0, with the loss function defined as:

L = ∥x0 − fθ(xt, t)∥.

During inference, the reverse process begins by sampling
noise from a Gaussian distribution, p(xT ) = N (xT ;0, I),
and iteratively denoising it using pθ(xt−1|xt) until x0 is
obtained. DDIM [13] refines this process by ensuring
its marginal distribution matches that of DDPM. Conse-
quently, during generation, only a subset of diffusion steps
{τ1, . . . , τS} is sampled, significantly reducing inference
latency.

E.2. Basics for VAE
Variational Autoencoders (VAEs) [7] are a class of genera-
tive models that combine probabilistic reasoning with neu-
ral networks to learn the underlying distribution of high-
dimensional data. A VAE consists of two components: an
encoder and a decoder. The encoder maps input data x to a
latent variable z characterized by a probabilistic distribution
q(z|x), typically parameterized as a Gaussian. The decoder
reconstructs the input by sampling from the latent space and
generating data through p(x|z).

To ensure that the latent space conforms to a struc-
tured prior distribution, typically a standard Gaussian
p(z) = N (0, I), VAEs optimize the Evidence Lower
Bound (ELBO):

L = Eq(z|x)[log p(x|z)]−DKL(q(z|x)∥p(z)),

https://lilianweng.github.io/posts/2021-07-11-diffusion-models.
https://lilianweng.github.io/posts/2021-07-11-diffusion-models.
https://lilianweng.github.io/posts/2021-07-11-diffusion-models.


where the first term represents the reconstruction loss, en-
suring that the generated data resembles the input, and the
second term is the Kullback-Leibler divergence, which reg-
ularizes the latent space.

A key point of VAEs is the reparameterization trick,
which facilitates gradient-based optimization by expressing
the latent variable z as:

z = µ+ σ · ϵ, ϵ ∼ N (0, I),

where µ and σ are outputs of the encoder network.
VAEs have found applications in areas such as image

synthesis, data compression, and representation learning
due to their ability to generate diverse, high-quality sam-
ples while maintaining interpretability of the latent space.
In our work, we employ a VAE as the backbone model and
introduce two submodules to decouple the video latent rep-
resentation effectively.
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