
VideoScene: Distilling Video Diffusion Model to Generate 3D Scenes in One Step

Supplementary Material

1. More Discussion of Preliminaries
In this section, we provide more preliminaries about the dif-
fusion model, consistency model [28], and contextual ban-
dit [30].

1.1. Diffusion Model
Diffusion models [11, 24, 25, 27] generate data by progres-
sively introducing Gaussian noise to the original data and
subsequently sampling from the noised data through several
denoising steps. Let pdata(x) denote the data distribution,
The forward process is described by a stochastic differential
equation (SDE) [27] given by

dxt = µ(xt, t)dt+ σ(t)dw (1)

where t ∈ [0, T ], T > 0 denotes a fixed time horizon,
µ(·, ·) and σ(·) represent the drift and diffusion coeffi-
cients,respectively, and {wt}t∈[0,T ] is the standard Brow-
nian motion. An important property of this SDE is the exis-
tence of an associated ordinary differential equation (ODE),
known as the Probability Flow (PF) ODE [27], which deter-
ministically describes the distribution’s evolution

dxt =

[
µ(xt, t)−

1

2
σ2(t)∇xt log pt(xt)

]
dt (2)

where∇xt
log pt(xt) is the score function of the intermedi-

ate distribution pt(xt). For practical purposes [13], a sim-
plified setting is often adopted, where µ(xt, t) = 0 and
σ(t) =

√
2t. This yields the intermediate distributions

pt(x) = pdata(x) ⊗ N (0, t2I), where ⊗ convolution op-
eration. Let π(x) = N (0, T 2I) and after a sufficient noise
adding process, the final distribution pT (x) will be closed
to π(x). Sampling involves solving the empirical PF ODE:

dxt
dt

= −t∇xt log pt(xt) (3)

starting from a sample xT ∼ N (0, T 2I) and running the
ODE backward procedure with Numerical ODE solver like
Euler [26] and Heun [13] solver, we can obtain a solution
trajectory {x̂t}t∈[0,T ] and thus get a approximate sample x̂0

from the data distribution pdata(x). The backward process
is typically stopped at t = ϵ to avoid numerical instability,
where ϵ is a small positive number, and x̂ϵ is treated as the
final approximate result.

1.2. Consistency Model
Consistency model [28] is a novel class of models that sup-
ports both one-step and iterative generation, providing a

trade-off between sample quality and computational effi-
ciency. The consistency model can be trained either by
distilling knowledge from a pre-trained diffusion model or
independently, without relying on pre-trained models. For-
mally, given a solution trajectory {x̂t}t∈[0,T ] sampled from
Eq. 2, we define the consistency function as f : (xt, t) 7→
xϵ. a consistency function exhibits a self-consistency prop-
erty, meaning that its outputs remain consistent for any pair
of (xt, t) points that lie along the same PF ODE trajectory.
The goal of a consistency model is to approximate this con-
sistency function f with fθ. Given any consistency function
f(·, ·), it must satisfy f(xϵ, ϵ) = xϵ, implying that f(·, ϵ)
acts as the identity function. This requirement is referred to
as the boundary condition. It is imperative for all consis-
tency models to adhere to this condition, as it is pivotal to
the proper training of such models. There are several simple
way to implement the boundary condition, for example we
can parameterize fθ as

fθ(x, t) = cskip(t)x+ cout(t)Fθ(x, t) (4)

where cskip(t) and cout(t) are differentiable functions such
that cskip(ϵ) = 1 and cout(ϵ) = 0. This parameterization en-
sures that the consistency model is differentiable at t = ϵ,
provided that Fθ(x, t), cskip(t), and cout(t) are all differen-
tiable, which is crucial for training continuous-time consis-
tency models. Once a consistency model fθ(·, ·) is well-
trained, samples can be generated by first sampling from
the initial distribution x̂T ∼ N (0, T 2I), and then evaluat-
ing the consistency model for x̂ϵ = fθ(x̂T , T ). This gen-
erates a sample in a single forward pass through the con-
sistency model. Additionally, the consistency model can be
evaluated multiple times by alternating between denoising
and noise injection steps to improve sample quality, thus of-
fering a flexible trade-off between computational cost and
sample quality. This multi-step procedure also holds signif-
icant potential for zero-shot data editing applications.

1.3. Contextual Bandit Algorithm
The Multi-Armed Bandit (MAB) problem, originally in-
troduced by [30], is a fundamental model in sequential
decision-making under uncertainty. It is named after the
analogy of a gambler trying to maximize rewards from
multiple slot machines (or ”arms”), each with an unknown
probability distribution of payouts. At each step, the agent
must decide which arm to pull, aiming to maximize the cu-
mulative reward over time. The core difficulty lies in ad-
dressing the exploration-exploitation dilemma: the agent
needs to explore different arms to learn their reward dis-



Algorithm 1 3D-Aware Leap Flow Distillation
1: Input: 3D dataset D, initial model parameter θ, learning rate η, one-step ODE solver Φ(·), distance metric d(·, ·), EMA

rate µ, noise schedule αt, σt, timestep interval k, diffusion optimization timesteps T ′, and encoder E(·)
2: Repeat
3: Sample ϵ ∼ N (0, I) and tn+1 ∈ [0, T ′]
4: Sample (IiInput, c

i) ∼ D, i = {0, 1}
5: tn ← tn+1 − k
6: Render images {IRender}Tτ=1 = g(S(I0Input, c

i), o(ci)), i = {0, 1}
7: xr0 ← E({IRender}τ=1)
8: xrtn+1

← αtn+1
xr0 + σtn+1

ϵ

9: x̂ϕtn ← xrtn+1
+ (tn − tn+1)Φ(x

r
tn+1

, tn+1;ϕ)

10: LD(θ, θ−; Φ)← d(fθ(x
r
tn+1

, tn+1), fθ−(x̂
ϕ
tn , tn))

11: θ ← θ − η · ∇θLD(θ, θ−; Φ)
12: θ− ← stopgrad(µθ− + (1− µ)θ)
13: Until convergence

tributions while simultaneously exploiting the best-known
arm to achieve immediate gains.

Balancing exploration and exploitation is crucial because
exploration uncovers potentially better options, while ex-
ploitation ensures short-term performance. Overemphasiz-
ing exploration can waste resources on suboptimal choices,
whereas overly exploiting known options risks missing
higher rewards. This trade-off is central to the design of
MAB algorithms.

MAB problems can be broadly categorized into two
types: context-free bandits and contextual bandits. Context-
free bandits have been extensively studied, with popular al-
gorithms such as the ϵ-greedy strategy [18] and the Upper
Confidence Bound (UCB) algorithm [1]. These approaches
assume that the rewards are solely determined by the arm
selection, without considering additional information. In
contrast, contextual bandits extend this framework by in-
corporating side information, or ”context,” to model the ex-
pected reward for each arm. Contextual bandits leverage the
context as input features, enabling a more nuanced under-
standing of the reward function. For instance, algorithms
like LinUCB [20] and Thompson Sampling for linear mod-
els [2] assume that the expected reward is a linear function
of the context. However, in practice, this linearity assump-
tion often fails for complex, non-linear environments.

To overcome this limitation, many works [3] have inte-
grated deep neural networks (DNNs) with contextual ban-
dit frameworks, significantly enhancing their representation
power. In our approach, we adopt a convolutional neural
network (CNN) for contextual bandit algorithm to dynami-
cally determine the optimal denoising timestep in video in-
ference. Specifically, we model this problem as follows:
• State Representation: The environment state is defined by

the input video latent xr0, capturing structural and percep-
tual details of the video.

• Agent and Policy: The agent is modeled using a CNN
policy network, which employs a probabilistic policy
πψ(t|xr0;ψ) to select the timestep t.

• Action Selection: The action corresponds to the choice of
a timestep t ∈ [0, T ′], representing the level of noise to
add during the denoising process.

• Reward Signal: Feedback is provided in the form of a
reward signal, defined as the negative mean squared error
loss (LMSE) between the denoised output and the ground
truth. This reward quantifies the quality of the denoising
process for the chosen t.

• Policy Update: The policy network updates its parameters
ψ using the observed rewards, gradually learning to select
the optimal t for different contexts.

By framing timestep selection as a contextual bandit prob-
lem, our method adaptively balances structural preservation
and artifact correction during video inference, achieving ro-
bust and high-quality results across diverse scenarios.

2. Additional Implementation Details
We present the pseudo-code for 3D-aware distillation in Al-
gorithm 1. We also provide details for additional experi-
ments.
Datesets. To further validate our strong generalizability,
we test our method on the NeRF-LLFF [22], Sora [6], and
more challenging outdoor datasets Mip-NeRF 360 [4] and
Tank-and-Temples dataset [16]. For video-to-3D applica-
tion, we also evaluate our method on the Mip-NeRF 360 [4]
and Tank-and-Temples dataset [16].
Video Metrics. We utilize VBench [12] to evaluate the
performance of our model by comparing it against sev-
eral state-of-the-art, open-source video frame interpolation
models. VBench provides a comprehensive analysis of
video generation quality by decomposing it into 16 distinct
evaluation metrics, enabling a detailed and multi-faceted as-
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Figure 1. Visual results of the generative ability. We highlight the generated regions in the red boxes in the novel generated views.

sessment of model performance. For our evaluation, we fo-
cus on key metrics such as Aesthetic Quality, Subject Con-
sistency, and Background Consistency, which offer critical
insights into the visual appeal and temporal coherence of
the generated frames.

Aesthetic Quality measures the visual appeal of the gen-
erated video. Utilizing the LAION aesthetic predictor [17],
it gauges the artistic and aesthetic value perceived by hu-
mans for each video frame. This score reflects various aes-
thetic dimensions, such as the layout, the richness and har-
mony of colors, photorealism, naturalness, and the artistic
quality of the video frames. Subject Consistency assesses
whether the appearance of a subject remains visually stable
and coherent across all frames of a video. This metric is
computed by evaluating the similarity of DINO [7] features
extracted from consecutive frames. Background Consis-
tency evaluates the temporal consistency of the background
scenes by calculating CLIP [23] feature similarity across
frames.

To comprehensively evaluate the quality of the gener-
ated videos, we included additional metrics from VBench in
the supplementary material, including Motion Smoothness,
Dynamic Degree, and Imaging Quality. Motion Smooth-
ness measures the fluidity of motion within the generated
video, evaluating how well the movement follows realistic,
natural trajectories. This metric assesses whether the video
adheres to the physical laws governing motion in the real
world. By utilizing motion priors in the video frame inter-
polation model [21], it quantifies the temporal smoothness
of the generated motions. Dynamic Degree is estimated
by RAFT [29] to indicate the temporal quality of gener-
ated videos. In our setting of still-scene video generation,

an excessively high Dynamic Degree indicates unnecessary
motion of objects within the scene, while an overly low Dy-
namic Degree suggests prolonged static periods interrupted
by abrupt changes in certain frames. Both scenarios are un-
desirable outcomes for our task. Imaging Quality refers to
the level of distortion present in the generated frames and
is assessed using the MUSIQ [14] image quality predictor,
which has been trained on the SPAQ [10] dataset.
Implementation Details for Video-to-3D Application.
For the video-to-3D application, we evaluate the 3D re-
construction performance of our method on the Mip-NeRF
360 [4] and Tanks-and-Temples datasets [16]. Starting
with two input images and corresponding camera poses es-
timated from DUSt3R [32], we first generate a continu-
ous video sequence interpolating between the two frames.
From this sequence, we extract intermediate frames by sam-
pling every seventh frame, resulting in seven new views
from novel perspectives. These sampled frames are then
processed using InstantSplat [9] for Gaussian optimization-
based 3D reconstruction from the generated novel views.

To assess the quality of our approach, we compare it
against SparseNeRF [31], the original 3DGS [15], and
DNGaussian [19], with per-scene optimization serving as
the benchmark. For quantitative evaluation, we report stan-
dard novel view synthesis (NVS) metrics, including PSNR,
SSIM [33], and LPIPS [38].

3. Additional Experiments and Analysis
3.1. More Visual Results
We present additional visual results of our VideoScene
framework in Fig. 9, showcasing its performance across di-
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Figure 2. Quantitative comparison across steps. We evaluate the results of CogVideo, DynamiCrafter, Stable Video Diffusion (SVD),
and VideoScene across 1, 10, 20, 30, 40, and 50 steps. VideoScene not only outperforms the other methods but also demonstrates
remarkable consistency, with its 1-step results closely approximating its 50-step results, whereas other methods exhibit a significant decline
in performance over fewer steps.
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Figure 3. Comparisons with base renderings with severe artifacts.

verse datasets, including NeRF-LLFF [22], Sora [6], Mip-
NeRF 360 [4], and Tanks-and-Temples [16]. These ex-
amples highlight the strong generalization capability of
our method, effectively adapting to novel and out-of-
distribution scenarios, whether indoor or outdoor.

We also provide additional visual results in Fig. 1 to fur-
ther illustrate the generative capability of our model. When
the input consists of two images with significantly different
viewpoints, the intermediate regions often lack direct cover-
age by either input image. In such cases, a model must rely
on its generative ability to synthesize these unseen areas.
As highlighted by the red boxes in Fig. 1, VideoScene suc-
cessfully generates novel content for these unseen regions.
This demonstrates not only the strong generative capacity
of our model but also its ability to generalize effectively
while maintaining high fidelity in reconstructing previously
unobserved areas.

3.2. More Quantitative Comparison Results
We provide comprehensive quantitative comparisons with
baseline methods in Fig. 2, 6. In Fig. 2, we evaluate
the performance of CogVideo [35], DynamiCrafter [34],
Stable Video Diffusion (SVD) [5], and our VideoScene
across different inference steps. The results demonstrate
that VideoScene not only surpasses other methods in gen-
eration quality but also achieves results comparable to their
50-step outputs in just one step. In contrast, the one-step
outputs of other methods fall significantly behind their 50-
step counterparts, highlighting the efficiency and effective-
ness of our approach.

Table 1. Quantitative comparison on Mip-Nerf 360 and Tank-and-
Temples datasets. We report the quantitative metrics with two in-
put views for each scene.

Method PSNR↑ SSIM↑ LPIPS↓
Mip-NeRF 360
3DGS 10.36 0.108 0.776
SparseNeRF 11.47 0.190 0.716
DNGaussian 10.81 0.133 0.727
InstantSplat 11.77 0.171 0.715
Ours 13.37 0.283 0.550

Tank and Temples
3DGS 9.57 0.108 0.779
SparseNeRF 9.23 0.191 0.632
DNGaussian 10.23 0.156 0.643
InstantSplat 10.98 0.381 0.619
Ours 14.28 0.394 0.564

In Fig. 6, we further evaluate our method across mul-
tiple dimensions using metrics from VBench [12], provid-
ing a more systematic and holistic validation of our gener-
ative quality. Notably, the Dynamic Degree metric assesses
both the dynamic motion of individual objects in the scene
and overall camera motion. Our method carefully balances
these aspects, preserving consistent camera motion while
minimizing unstable object movements, resulting in a well-
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Figure 6. Quantitative comparison across additional dimen-
sions. We further evaluate the 1-step and 50-step results by incor-
porating additional dimensions from the VBench metrics.

balanced intermediate Dynamic Degree value. In compari-
son, DynamiCrafter exhibits higher values due to its inabil-
ity to maintain relative object stability, leading to excessive
motion. Conversely, CogVideo shows lower values, as it
often produces videos with prolonged static periods inter-
rupted by abrupt transitions, particularly between the first
and second halves. These observations underscore the ro-
bustness and balanced performance of our approach.

3.3. More Qualitative Comparison Results
In Fig. 3, we compare our VideoScene with MVSplat base
renderings to show its effectiveness. In Fig. 4, we compare
with another 3D-aware diffusion model [37], and in Fig. 5,
we show more visual comparison with NeRF-based meth-
ods [8, 31, 36].

3.4. Video-to-3D Applications
We evaluate the geometric consistency of our generated
frames to assess their suitability for downstream tasks such
as 3D reconstruction. For this purpose, we utilize In-
stantSplat [9], a 3D Gaussian Splatting (3DGS) method
built on DUSt3R [32], which generates Gaussian splats

Table 2. User study on the layout stability, smoothness, visual
realism, and overall quality score in a user study, rated on a range
of 1-10, with higher scores indicating better performance.

Method Layout Stability Smoothness Visual Realism Overall Quality

Stable Video Diffusion [5] 6.48 7.29 6.75 7.13
DynamiCrafter [34] 7.02 7.01 6.02 6.68
CogVideoX [35] 7.83 7.53 7.33 7.50

Ours 8.39 8.91 9.52 8.82

from sparse, unposed images. Using this approach, we use
VideoScene to generate video frames from given two in-
put views and optimize the generated frames for 3D Gaus-
sian representations. We also compare our method against
existing per-scene optimization techniques, including In-
stantsplat [9], DNGaussian [19], 3DGS [15], and SparseN-
eRF [31]. The results, presented in Tab. 1 and Fig. 7,
demonstrate that our approach effectively preserves the ge-
ometric structure of the scene, avoiding issues such as
the multi-face problem. Furthermore, our method exhibits
strong generative capabilities, reconstructing regions be-
yond the coverage of input views.

3.5. User Study
For the user study, we show each volunteer five samples of
generated video using a random method. They can rate in
four aspects: (1) layout stability. Users assess whether the
scene layout in the video is spatially coherent and consis-
tent. (2) smoothness. Users observe whether the frame rate
is stable, whether actions are smooth, and whether there are
any stuttering or frame-skipping issues. (3) visual realism.
Users rate the similarity between the generated video and a
real video. (4) overall quality. All aspects are on a scale of
1-10, with higher scores indicating better performance. We
collect results from 30 volunteers shown in Table 2. We find
users significantly prefer our method over these aspects.
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Figure 7. Qualitative comparison on Mip-Nerf 360 and Tank-and-Temples. With two sparse views as input, our method achieves much
better reconstruction quality compared with baselines.
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Figure 8. Fail case of passing directly through the closed door.

3.6. Failure Case

Significant semantic disparities between input views lead
to failure cases (see Fig. 8). The generated video passes di-
rectly through the closed door rather than navigating around
it to enter the room.

4. More Discussions

4.1. Discussion of Empirical Runtime

We provide the runtime comparison in Tab 3. Dynami-
Crafter is efficient due to smaller model size and lower
frame rates and resolutions, but ours is still much faster.

4.2. Discussion of limited computational resources

Tab. 4 presents the comparison of memory costs on a single
A100. The primary consumer of computational resources

Table 3. Empirical runtime comparisons.

Method SVD DynamiCrafter CogVideoX-5B ViewCrafter VideoScene (Ours)

Runtime (s) 933.89 21.14 179.45 206.13 2.98
Frames 25 16 49 25 49

is the video diffusion model itself, which is inherently un-
avoidable. Leap flow distillation, as a strategy for video
training, incurs a computational cost comparable to that of
video diffusion training, without introducing significant ad-
ditional overhead.

Table 4. Comparison on memory costs.

Description Video Backbone (CogVideoX) Leap Flow Distillation DDPNet Total

Training Cost ∼ 66 GB ∼ 10 GB ∼ 0.02 GB ∼ 76 GB



Figure 9. Visual results of VideoScene. We show visual results on NeRF-LLFF [22], Sora [6], Mip-NeRF 360 [4], and Tank-and-Temples
dataset [16] datasets. The first and last columns represent the input views, while the intermediate columns depict the generated views.
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