
Supplementary Materials:

Visual Consensus Prompting for Co-Salient Object Detection

Additional supplementary materials are provided to
complement the necessary experimental details and further
demonstrate the effectiveness and efficiency of our VCP.
The materials mainly include: A. Additional Experimen-
tal Details. B. Ablation Analysis on Architecture Configu-
ration and Hyperparameters. C. Some alternative schemes
of VCP with more efficient parameters. D. Generalization
verification on the bi-modal RGB-D Co-salient object de-
tection (CoSOD).

A. Additional Experimental Details.
Datasets. All experiments are evaluated based on the most
commonly used three datasets for CoSOD tasks: CoCA
[19], CoSOD3k [2], and CoSal2015 [15]. The CoCA [19]
dataset consists of 80 categories with 1295 images. Each
image in the CoCA dataset contains extraneous salient ob-
jects apart from co-salient objects, and there are many data
categories in this dataset that are not encountered in the
training data. Therefore, the CoCA dataset is the most chal-
lenging and best reflects the robustness and generalization
of each method. Cosal2015 [15] contains 2015 images of 50
categories, and each group has one or more challenging is-
sues such as complex environments, object appearance vari-
ations, occlusion, and background clutters. CoSOD3k [2] is
the largest CoSOD evaluation dataset so far, which contains
160 groups and totally 3,316 images.

The three primary training datasets widely used in
CoSOD tasks are the DUT-class [19], COCO-9k [8], and
COCO-SEG [11] datasets, and we denote them as D, C,
and S, respectively. The DUTS-class [19] dataset consists
of 291 categories with 8,250 images. The COCO-9k [8]
dataset consists of 65 categories with 9,213 images, and the
COCO-SEG dataset contains 200k images of 78 categories.
The combinations of training datasets primarily used by ex-
isting methods include D+C [7], [21], [17], [6], as well as
D+S [13], [14], [20]. In the comparative experiments, we
conduct experiments using both combinations of training
data to ensure fairness of comparison. In all ablation exper-
iments, we use the smaller datasets DUT-class and COCO-
9k as the training set.

Quantitative Results. Table 1 presents a quantitative

Table S1: Ablation on the tuning stages, i.e., tuning different
Transformer blocks of the foundation model (SegFormer).

Tuning Stage
Tunable

Param. (M)

COCA CoSOD3k CoSal2015

Sm↑Fmax
m ↑MAE↓Sm↑Fmax

m ↑MAE↓Sm↑Fmax
m ↑MAE↓

Stage-1 1.82 .683 .532 .123 .841 .821 .066 .883 .881 .057
Stage-1,2 2.22 .699 .559 .104 .847 .828 .064 .887 .891 .055

Stage-1,2,3 3.34 .723 .594 .097 .858 .836 .060 .901 .903 .047

Stage-1,2,3,4 4.94 .774 .680 .069 .874 .868 .049 .911 .920 .037

comparison of our VCP with the most representative works
in the past three years across multiple metrics. Compared
to 12 full fine-tuning CoSOD methods, our VCP demon-
strates a significant performance advantage on three com-
monly used benchmark test sets. Particularly on the CoCA
dataset, which is the most challenging and best reflects the
essence of the CoSOD task, our method outperforms the
second-best by 5.6% and 6.8% in terms of Sm and Fm

metrics, respectively. Compared to the prompt-based tun-
ing method EVP [9], our VCP exhibits overwhelmingly su-
perior performance. Comprehensive experiments demon-
strate the promising prospects of introducing prompt learn-
ing for CoSOD tasks and validate the powerful capability
of our proposed concise and parameter-efficient VCP in ad-
dressing this task. The Precision-Recall and Fm-Threshold
curves shown in Fig. S1 further demonstrate the effective-
ness of our method compared to 12 state-of-the-art methods.

Qualitative Results. Fig. 5 illustrates the visual com-
parisons between our VCP and seven representative works
across four selected scenarios. ”Normal” denotes scenar-
ios with relatively simple backgrounds and minimal inter-
ference from non-co-salient objects. ”Distraction” indi-
cates scenarios where there are numerous interfering salient
objects apart from the co-salient objects. ”Tiny Object”
indicates that the co-salient objects in the image have a
smaller pixel ratio. ”Variation” represents scenarios where
co-salient objects within specific groups exhibit various pre-
sentation styles. Through the visual comparisons in Fig. 5,
it can be observed that our VCP achieves more effective lo-
calization and segmentation performance even when facing
challenging cases such as multiple salient object interfer-
ences, small or diverse co-salient objects. The performance



Fig. S1: Precision-Recall and Fm-Threshold curves are compared between our VCP and 12 SOTA methods on three test sets.

Table S2: Ablation on the parameter scale factor r.

Scale-r
Tunable

Param. (M)
COCA CoSOD3k CoSal2015

Sm↑ Fmax
m ↑ MAE↓ Sm↑ Fmax

m ↑ MAE↓ Sm↑ Fmax
m ↑ MAE↓

r=64 2.71 .715 .582 .099 .858 .842 .055 .896 .901 .046
r=32 2.76 .740 .627 .088 .865 .853 .055 .905 .912 .044
r=16 2.89 .759 .656 .081 .872 .862 .053 .911 .918 .039
r=8 3.34 .769 .665 .069 .872 .864 .051 .913 0.918 .035

r=4 4.94 .774 .680 .069 .874 .868 .049 .911 .920 .037

Fig. S2: Ablation on the predefined Saliency Seeds (SS) quantity
j in our CPG. Bold indicates the default settings in our VCP.

gains are attributed to our task-specific VCP, which ade-
quately stimulates the semantic representations in the foun-
dation model.

B. Ablation Analysis on Architecture Configu-
ration and Hyperparameters.

Effectiveness of the tuning stages. Further experiments
are conducted to validate the impact of tuning different
stages of the foundation model on the final performance.
As shown in Table S1, the improvement in model perfor-
mance becomes increasingly evident as the prompt addition
stage deepens.

Effectiveness of the parameter scale factor r. Table
S2 presents the ablation analysis of the scale factor used
when performing downsampling with MLP on frozen em-
beddings. The scale factor significantly impacts the tunable
parameters of the model, and while r = 8 strikes a balance
between parameters and performance, r = 4 is ultimately
chosen considering the model’s performance.

Effectiveness of hyperparameters in CPG: The main
insight of our CPG is to enforce effective tunable parame-
ters to focus on and mine co-salient representations within
intra-group frozen embeddings, thereby generating task-
specific consensus prompts PCo.

We achieve our CPG by predefining j learnable saliency
seeds, clustering representative prototypes of salient objects

Table S3: Ablation on the number of representative consensus
seeds selected in our CPG (top-k).

Top-k
Tunable

Param. (M)
COCA CoSOD3k CoSal2015

Sm↑ Fmax
m ↑ MAE↓ Sm↑ Fmax

m ↑ MAE↓ Sm↑ Fmax
m ↑ MAE↓

k=16 4.94 .760 .659 .085 .873 .867 .055 .908 .916 .046
k=24 4.94 .768 .669 .075 .871 .862 .055 .912 .922 .041
k=32 4.94 .774 .680 .069 .874 .868 .049 .911 .920 .037
k=40 4.95 .752 .655 .079 .876 .870 .052 .906 .917 .044
k=48 4.96 .754 .644 .076 .869 .861 .052 .907 .916 .040

Table S4: Ablation experiments are conducted based on different
unified mapping dimensions d of the Segformer prediction head.
”OOM” indicates out-of-memory.

Segformer
Head

Tunable
Param. (M)

COCA CoSOD3k CoSal2015

Sm↑Fmax
m ↑MAE↓Sm↑Fmax

m ↑MAE↓Sm↑Fmax
m ↑MAE↓

d =768 7.83 OOM OOM OOM
d =384 4.98 OOM OOM OOM
d =128 3.84 .747 .656 .101 .872 .861 .054 .909 .916 .038

Table S5: Ablation regarding the preset parameter d in PH.

PH-d Tunable
Param. (M)

COCA CoSOD3k CoSal2015

Sm↑ Fmax
m ↑ MAE↓ Sm↑ Fmax

m ↑ MAE↓ Sm↑ Fmax
m ↑ MAE↓

d=64 4.53 .762 .658 .075 .870 .862 .051 .907 .914 .040
d=96 4.74 .766 .661 .080 .871 .865 .058 .909 .921 .051
d=128 4.94 .774 .680 .069 .874 .868 .049 .911 .920 .037
d=192 5.39 .757 .647 .082 .878 .867 .048 .910 .913 .037
d=256 5.87 .749 .633 .084 .871 .852 .051 .909 .912 .037

to generate saliency estimation maps {Ms}4s=1 for each in-
dividual images. As shown in Fig. S2, different numbers of
saliency seeds result in certain fluctuations in the model’s
tunable parameters, but all ensure competitive performance
gains. Considering both the effectiveness of performance
and the efficiency of tunable parameters, j = 35 is selected.

The generated saliency estimation maps are utilized
to focus on pixel embeddings to form consensus seeds
Coseed ∈ RNLs×Cr . Finally, we select the top-k most
relevant consensus seeds to form representative consensus
Corepseed ∈ Rk×Cr . We further conduct experiments to val-
idate the effectiveness of the predefined saliency seeds and
the number of selected representative consensus seeds (top-
k). As shown in Table S3, the quantity of representative
consensus seeds has a minimal impact on the overall num-
ber of tunable parameters in the model, but it does introduce



Table S6: Some alternative schemes of VCP exhibit more efficient parameters and competitive performance. r represents the parameter
scale factor (default r = 4), d represents the unified mapping dimension in PH (default d = 128), and ”Share MLP” indicates the adoption
of stage-shared MLP in CPD (default as adaptive tuning).

Combination
Train

Dataset
Tunable

Param. (M)
Model Size

(MB)
COCA CoSOD3k CoSal2015

Sm↑ Fmax
m ↑ MAE↓ Sm↑ Fmax

m ↑ MAE↓ Sm↑ Fmax
m ↑ MAE↓

EVP S+D 3.70 14.10 0.686 0.546 0.126 0.839 0.813 0.076 0.876 0.874 0.068

VCP(r = 8 + d = 96) S+D 3.13 12.08 0.814 0.745 0.054 0.895 0.892 0.043 0.922 0.933 0.034
VCP(r = 8+Share MLP) S+D 3.24 12.47 0.817 0.753 0.053 0.889 0.887 0.047 0.918 0.926 0.035

VCP(r = 4) S+D 4.94 19.02 0.819 0.752 0.054 0.895 0.893 0.043 0.927 0.941 0.030

VCP(r = 8 + d = 96) C+D 3.13 12.08 0.770 0.672 0.079 0.873 0.869 0.050 0.911 0.919 0.038
VCP(r = 8+Share MLP) C+D 3.24 12.47 0.767 0.665 0.072 0.870 0.862 0.051 0.909 0.918 0.040

VCP(r = 8) C+D 3.34 12.89 0.769 0.665 0.069 0.872 0.864 0.051 0.913 0.918 0.035
VCP(r = 4) C+D 4.94 19.02 0.774 0.680 0.069 0.874 0.868 0.049 0.911 0.920 0.037

Table S7: Comprehensive comparison with 5 cutting-edge meth-
ods and ablation analysis of the used backbone.

Datasets Metrics
CoRP OURSI EVP GEM MCCL SCED OURSIIOURSII

TPAMI23 — CVPR23CVPR23AAAI23ACMM23 — —

CoCA

Sm↑ 0.732 0.774 0.686 0.726 0.713 0.741 0.819 0.805
Fmax
m ↑ 0.619 0.680 0.546 0.599 0.584 0.629 0.752 0.731

MAE↓ 0.093 0.069 0.126 0.095 0.097 0.084 0.054 0.059
Em↑ 0.773 0.813 0.708 0.767 0.764 0.804 0.830 0.823

Training Dataset C+D C+D S+D S+D S+D S+D S+D S+D

Foundation Model PVTv2 SegF SegF T2T-ViT PVTv2 CLIP-ViT SegF PVTv2

Tunable Param. (M) — 4.9 3.7 52.3 27.1 156.7 4.9 4.95

Model Size (MB) — 19 14.1 199.7 104.5 1750 19 19

some performance fluctuations. For the comprehensive ef-
fectiveness of the model’s performance, k = 32 is deter-
mined as the default setting.

Effectiveness of hyperparameters in PH: As shown in
Table S4, segformer’s original prediction head up-projects
multi-scale features onto a unified high dimensionality
(d=768) and employs multiple fully connected layers for
prediction, resulting in a higher number of tunable parame-
ters (3.15M).

Hence, a more concise prediction head (PH) is designed
(1.49M). Our PH initially projects multi-scale features to a
lower dimensionality (d = 128). Subsequently, the deep-
est features are processed with ASPP and utilized to guide
FPN-like decoding and input to a linear classifier for cat-
egory prediction. We conducted ablation experiments on
the set unified dimensionality d. As shown in Table S5,
the hyperparameter d is not the key factor affecting the
overall parameter count of the model. It can be observed
that d = 96 demonstrates certain performance competitive-
ness while reducing a certain number of tunable parameters.
Considering both the effectiveness of performance and the
efficiency of tunable parameters, d = 128 is selected.

Comparison and analysis regarding the foundation
models used. For fairness in comparison, we use founda-
tion models of comparable scale to existing methods (Ta-
ble S7). Additionally, without optimizing hyperparameters,
we conduct ablation experiments on an additional baseline

model, PVTv2 [12]. Through comparison, it is observed
that using foundation models of similar or even identical
scale, our proposed parameter-efficient method achieves a
substantial performance improvement.

C. Parameter-efficient combination schemes

We conduct additional experiments to validate the potential
of parameter efficiency while ensuring competitive perfor-
mance gains. Through extensive analysis of ablation ex-
periments, we find that three main predefined parameters
significantly impact the overall parameter scale: the param-
eter scale factor r in CPG, the unified mapping dimension
d in PH, and the fine-tuning mode in CPD. Based on the
performance from the conducted ablation experiments as
a reference, and considering the competitive scale of tun-
able parameters compared to existing prompt tuning meth-
ods (3.7M), some combinations of VCP schemes are imple-
mented.

As shown in Table S6, our supplementary three
lightweight schemes (with a minimum of only 3.13M tun-
able parameters) exhibit significantly better parameter effi-
ciency and overwhelming performance effectiveness com-
pared to the state-of-the-art method EVP (with 3.7M tun-
able parameters). These lightweight schemes achieve com-
petitive performance while maintaining a reduced parame-
ter footprint, making them strong alternatives to our default
settings.

D. Generalization verification on the RGB-D
CoSOD

To validate the high generalization capability of the pro-
posed VCP for CoSOD-related tasks, we transfer VCP to
address the bimodal RGB-D CoSOD task. For fairness of
comparison, we retrain VCP with the same training data
as existing methods and conduct tests on three benchmark
datasets. Specifically, DUT-class (consists of 291 categories
with 8,250 images) [19] is used as the training set, and cor-



Table S8: Generalization verification on the RGB-D CoSOD task. Our VCP is retrained with the same training set (DUT-class [19]) as
existing RGB-D CoSOD methods and conducts testing on three benchmark datasets (CoSal1k [18], CoSal150 [16] and CoSal183 [5]).

Datasets Metrics
HSCS [1] CBCS [4] CoEG [2] GICD GICD+D ICNet ICNet+D GCoN GCoN+D CADC CADC+D CTNet

OURSTMM19 TIP22 TPAMI21 ECCV20 [19] NeurIPS20 [6] CVPR21 [3] ICCV21 [17] TIP22 [18]

CoSal1k

Sm↑ 0.478 0.529 0.811 0.793 0.756 0.840 0.788 0.807 0.810 0.850 0.841 0.875 0.893
Emax

m ↑ 0.640 0.651 0.866 0.846 0.816 0.895 0.844 0.864 0.861 0.892 0.885 0.913 0.933
Fmax
m ↑ 0.428 0.505 0.799 0.783 0.746 0.846 0.767 0.814 0.815 0.837 0.832 0.865 0.896

MAE↓ 0.242 0.230 0.085 0.090 0.102 0.073 0.093 0.083 0.080 0.077 0.090 0.063 0.045
Em↑ 0.512 0.520 0.815 0.842 0.809 0.891 0.839 0.856 0.855 0.861 0.835 0.882 0.921
Fm↑ 0.293 0.354 0.770 0.778 0.743 0.836 0.754 0.809 0.810 0.802 0.779 0.834 0.881

CoSal150

Sm↑ 0.661 0.576 0.851 0.821 0.812 0.888 0.856 0.821 0.867 0.895 0.895 0.910 0.920
Emax

m ↑ 0.884 0.726 0.890 0.878 0.880 0.939 0.920 0.876 0.924 0.933 0.759 0.944 0.953
Fmax
m ↑ 0.836 0.608 0.870 0.846 0.831 0.906 0.867 0.834 0.878 0.893 0.905 0.912 0.924

MAE↓ 0.163 0.211 0.079 0.077 0.089 0.050 0.069 0.080 0.059 0.062 0.068 0.053 0.039
Em↑ 0.605 0.550 0.873 0.874 0.876 0.935 0.910 0.871 0.921 0.904 0.892 0.920 0.944
Fm↑ 0.590 0.443 0.850 0.840 0.876 0.896 0.844 0.828 0.869 0.858 0.848 0.880 0.905

CoSal183

Sm↑ 0.704 0.620 0.728 0.645 0.661 0.763 0.719 0.707 0.708 0.709 0.649 0.764 0.795
Emax

m ↑ 0.790 0.748 0.764 0.668 0.687 0.768 0.757 0.726 0.719 0.770 0.759 0.837 0.873
Fmax
m ↑ 0.603 0.486 0.558 0.442 0.448 0.617 0.548 0.553 0.556 0.609 0.592 0.654 0.699

MAE↓ 0.079 0.088 0.073 0.111 0.100 0.066 0.073 0.088 0.094 0.110 0.121 0.068 0.051
Em↑ 0.710 0.636 0.742 0.655 0.673 0.751 0.742 0.703 0.705 0.680 0.668 0.752 0.790
Fm↑ 0.529 0.399 0.535 0.433 0.438 0.600 0.533 0.531 0.537 0.524 0.505 0.583 0.630

Model Size (MB) — — 69 533 591 70 163 542 600 1499 1596 570 19.02

Running Time (FPS) 0.12 1 0.43 55.56 40 76.9 71.4 62.5 41.32 31.25 19.23 17.54 40.4

Fig. S3: Visual comparison between our VCP and the most representative RGB-D CoSOD method CTNet [18].

responding depth data is generated using depth estimation
algorithms [10]. The three widely used RGB-D CoSOD test
sets include: CoSal1k [18] (with 106 groups, totaling 1000
image pairs), CoSal150 [16] (with 21 groups, totaling 150
image pairs), and CoSal183 [5] (with 16 groups, totaling
183 image pairs).

To provide more convincing evidence of the effective-
ness of the proposed VCP on this task, we refrain from
performing any model fine-tuning or post-processing. Fur-
thermore, unlike existing methods that employ dual-stream
architectures and specialized cross-modal fusion modules
to enhance performance, we utilize a simple single-stream

architecture and employ the most basic early fusion strat-
egy by simply adding the cross-modal images as inputs.
Comprehensive experiments demonstrate that our simpli-
fied version of VCP still achieves remarkable performance
on RGB-D CoSOD tasks. As shown in Fig. S3, in scenarios
with some interference and insufficient depth effectiveness,
our VCP still achieves superior segmentation performance.
Table S8 presents the quantitative comparison results with
state-of-the-art RGB-D CoSOD methods on three bench-
mark datasets, providing strong evidence of the high gen-
eralization capability of our VCP for related group-based
segmentation tasks.
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