Visual Lexicon: Rich Image Features in Language Space

Supplementary Material

A1l. Technical Details

We introduced the main technical and implementation de-
tails of our ViLex model in the main paper, here we provide
a more comprehensive explanation.

Text-to-image diffusion model. Following DeDiffu-
sion [76], we use Imagen [60] as the base text-to-image dif-
fusion model, adapting the U-Net architecture from [49, 57]
with 600M parameters, an embedding dimension of 256,
and an input resolution of 64x64. The text encoder of Ima-
gen is OpenCLIP ViT-H/14 [13, 32] with a vocabulary size
of 49408. The U-Net conditions on text embeddings via a
pooled embedding vector, which is added to the diffusion
timestep embedding. Imagen is further conditioned on the
full sequence of text embeddings by incorporating cross-
attention over the text embeddings at multiple resolutions.
The Imagen model uses v-prediction [61] as its objective,
with a batch size of 2048, and is trained for 3 million steps.
As a baseline model, Imagen achieves an FID of 6.52 on
30K 64x64 MS-COCO 2014 validation images [60]. Dur-
ing image generation inference, we use a super-resolution
model, such as an SDXL upsampler, to upsample the image
resolution from 64x64 to 512x512 for better visualizations.

Model architecture of ViLex. ViLex consists of two com-
ponents: a ViT-based image encoder and a transformer-
based attention pooling module. Both components are un-
frozen during the training process. For the image encoder,
we use a pretrained SigL.IP-S0o400M @224 [88]. SigLIP uti-
lizes ViT-base as the backbone and is pretrained on the We-
bLI dataset [11] using a sigmoid loss and trained on English
image-text pairs, with input images resized to 224x224.
The model architecture of the ViT-base is shape-optimized
on 400M training samples for improving the model effi-
ciency and speed. In our method, the attention pooler is im-
plemented as a single multi-head attention layer with learn-
able queries, using the encoder output as both keys and val-
ues. This allows the attention pooling module to effectively
aggregate embeddings of varying lengths. The attention
pooling module contains n learnable queries, where n <75,
along with [SOS] and [EOS] tokens to ensure the total token
count remains within the 77-context length limit defined by
the CLIP text encoder [32, 53]. The attention pooling layer
comprises 5 transformer blocks, which are always randomly
initialized.

Model training. The training data is obtained from We-
bLI [11], enabling training on either images alone or with
image-text pairs. We found that joint image-text training
and our TFG are essential for enabling multimodal image
generation. However, training without text captions does

not negatively impact performance on downstream vision-
language tasks. Following [60, 76], we use Adafactor op-
timizer [63] and a weight decay of 0.01. Training is per-
formed with a batch size of 2048 over 300K steps, which
takes approximately 2.5 days on 64 TPUvS chips. We found
that double the training steps (from 300k to 600k) can fur-
ther improve the model performance on increasing the per-
formance of a pretrained vision encoder. The ViT is ini-
tialized with a pretrained SigL.IP model and the attention
pooling layers are randomly initialized. We use learning
rate 1 x 107° for the image encoder and 3 x 10~* for the
attention pooling layers, with a cosine learning rate decay
and a 10K-step linear warmup, and a weight decay of 0.01.
After training, our ViLex encoder maps an image to ViLex
representations. We next evaluate two capabilities of these
frozen ViLex representations: image generation and visual
understanding.

PaliGemma experiments. To evaluate the effectiveness
of the proposed ViLex approach in enhancing a pretrained
vision encoder for vision-language tasks, we integrate our
vision encoder into the PaliGemma [6] framework and re-
place the vision encoder with either the fine-tuned SigLIP-
So400M [88] from VilLex or the official version with-
out model fine-tuning, freezing the vision encoder and
fine-tuning the model on downstream tasks. Following
PaliGemma’s official pipeline, we transfer the model to a
variety of individual academic benchmarks using a unified
transfer approach with minimal hyperparameter tuning. To
ensure fair comparison, we applied the same hyperparam-
eter sweeping strategy for both the baseline and our fine-
tuned vision encoder, reporting the best results for each.
This structured approach allows us to fairly assess the im-
pact of the proposed ViLex method on a wide range of
vision-language tasks. The sweeping parameters for these
tasks are as follows: COCOCap [40] (COCO image cap-
tioning task) and COCO-35L [70] (COCO captions trans-
lated in 35 languages): learning rate (4e-6, 5e-6, 6e-6),
epochs (5, 10), dropout (0, 0.02, 0.05). TextCaps [64] (im-
age captioning with reading comprehension): learning rate
(4e-6, 6e-6), and training epochs (5, 10). For SciCaps [28]
(captions for scientific figures): learning rate (6e-5, 7e-5),
dropout (0.1, 0.2), and label smoothing (0.1, 0.2). For
VQAWV2 [21] (visual question answering): label smoothing
(0.0, 0.1), dropout (0.0, 0.1), and weight decay (0, le-6).
For TextVQA [65] (visual reasoning based on text in im-
ages): learning rate (4e-6, 6e-6). For OKVQA [46] (outside
knowledge VQA), ScienceQA [43] (science question an-
swering), and VizWizVQA [22] (VQA from people who are
blind): learning rate (8e-6, le-5), and dropout (0.0, 0.02).
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ViLex SigLIP 150k

ViLex SigLIP 600k 141.5 140.0 124.0 134.3 136.1 81.8 52.7 58.3 89.3 75.0 65.4 67.5 69.7 65.6 65.2 57.2 62.6

Table A1l. ViLex improves both image understanding and reconstruction capabilities of vision encoders by fine-tuning them using ViLex’s
training approach. Extending the fine-tuning of SigLLIP with the ViLex approach from 150k to 600k steps results in improved overall
model performance across evaluated benchmarks. We use PaliGemma’s [6] framework for linear evaluation, replacing the vision
encoder with either the fine-tuned SigLIP in ViLex or the official one, and freeze vision encoder and fine-tune the model on downstream

tasks. We use the same hyper-parameters and model architecture for a fair comparison.

Below, you will see an input image along with two generated images, labeled as "Method A" and "Method B". Your
task is to evaluate which image better meets specific criteria compared to the input image:

¢ Semantic Alignment: Which generated image more accurately captures the original content and semantic details,
such as object categories? Note that it is less preferred if a model generates new instances or objects that were not in

the input image or if it omits existing objects.

e Style Alignment: Which generated image better preserves the artistic style and visual aesthetics of the original?

¢ Layout Alignment: Which generated image maintains a composition and positioning of objects that aligns more

closely with the input image?

For each criterion, please select the method (A or B) that you feel performs better. There are no right or wrong answers

—please base your decision on your personal preference.

Method A

Method B

Q1: Semantic Alignment
* Method A
* Method B

Q2: Style Alignment
* Method A
* Method B

Q8: Layout Alignment
* Method A
* Method B

Figure A1l. The instructions and question format used for human study.

For GQA [30] (VQA on image scene graphs): learning
rate (5e-6, le-5), and dropout (0.0, 0.02, 0.05). For Ref-
COCO [33, 45, 83] (referring expression segmentation): la-
bel smoothing (0.1, 0.2), epochs (60, 100), and dropout (0,
0.05). For MSRVTT-Caps [78] (open-domain short video
captioning): weight decay (0, 1e-6), dropout (0, 0.2), and

epochs (20, 40).

A2. Human Study

We conduct human studies to evaluate the quality of gener-
ated images using an image-to-image pipeline, focusing on
three criteria: Semantic Alignment, Style Alignment, and

Layout Alignment. For Semantic Alignment, participants
judge which generated image more accurately captures the
original content and semantic details, such as object cate-
gories. Introducing new instances or omitting existing ones
from the input image is considered less desirable. For Style
Alignment, participants assess which generated image best
retains the artistic style and visual aesthetics of the original.
For Layout Alignment, participants evaluate which gener-
ated image maintains a composition and positioning of ob-
jects that closely matches the input image.

The results of this evaluation are reported in Table 2 of
the main paper. Detailed instructions and the question for-
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Figure A2. More demo results of generating a set of images (generated under different diffusion noises), which are highly semantically
and visually similar to each other, by using ViLex tokens as “text” prompts for text-to-image diffusion models.

mat for the human study are shown in Figure A 1.

A3. Ablation Study

Training Steps. We observed that extending the fine-
tuning steps of the vision encoder using our ViLex pipeline
leads to improved performance across nearly all evaluated
benchmarks, as shown in Table Al. Specifically, increas-
ing the training steps from 150k to 300k yields significant
gains. Further extending the training to 600k steps provides
marginal improvements compared to the 300k-step results.
The largest improvements are observed in datasets that de-
mand stronger spatial understanding, such as the referring
expression segmentation datasets RefCOCO/+/g.

Number of attention pooling layers. Although increas-
ing the number of attention pooling layers improves image
reconstruction performance (as indicated by a lower FID
score), it also introduces a trade-off with image understand-
ing capabilities. As shown in Table A2, we found that using

5 attention pooling layers provides the optimal balance be-
tween image generation quality and developing an effective
vision encoder for visual scene understanding.

#layers FID COCOCaps
2 2.62 140.7
5 2.58 141.5
8 2.52 141.0

Table A2. Ablation study on number of attention pooling layers.

Vision encoders. The ViLex approach effectively enhances
various vision encoders for downstream visual scene under-
standing tasks. We initialize the vision encoder of VilLex
with either the CoCa [82] pretrained ViT or the SigLIP [88]
pretrained ViT-So400M. Similar to our experiments in pre-
vious sections, We observed consistent performance im-
provements for both image understanding tasks, such as
COCOCaps [40], and video understanding tasks, such as
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Figure A3. More demo results of zero-shot accessorization via prompting a frozen text-to-image generation model with our visual prompts

(i.e., ViLex tokens) and text prompts from natural language.

MSRVTT-Caps [78]. Compared to a roughly 2% improve-
ment for SigLIP in terms of CIDEr score on COCOCaps,
the gains for CoCa were even more substantial, reaching
approximately 4%. The flexibility to consistently improve
different pretrained models demonstrates Vilex’s general-
izability across various types of vision encoders.

Datasets CoCa FET. w/ ViLex ‘ SigLIP ET. w/ ViLex
COCOCaps  131.6 135.8 139.7 141.5
MSRVTTCaps 56.1 60.2 69.4 714

Table A3. Fine-tuning vision encoders with the ViLex approach
enhances image understanding performance across various pre-
trained models, including CoCa [82] and SigLIP [88]. E.T. denotes
fine-tuning the vision encoder, such as CoCa, during the VilLex
model pretraining stage.

A4. Demo Results

Semantic-level image reconstruction. In this section, we
present additional demo results in Figure A2, showcasing a
set of images generated with varying diffusion noises and
different random seeds. These images demonstrate high se-
mantic and visual consistency, leveraging ViLex tokens as
“text” prompts for text-to-image diffusion models. How-
ever, as shown in the results, our model occasionally misses
small objects in the scene. This limitation primarily stems
from using a low-resolution text-to-image diffusion model

as the base during the ViLex model’s pretraining phase. We
hypothesize that this issue could potentially be mitigated by
employing a higher-resolution T2I model as the base model.
Prompting a frozen T2I model with both visual and tex-
tual prompts. In the main paper, we have demonstrated
that ViLex tokens can serve as a novel visual “language”
for multimodal image generation. Unlike methods such as
DreamBooth [58, 59] and textual inversion [18], which re-
quire: (1) learning specialized text tokens for specific in-
stances, (2) gradient-based training for each individual im-
age, and (3) the use of LORA adapters [29] to modify the
model architecture, DreamBooth must be fine-tuned sepa-
rately for each object (or each set of images correspond-
ing to the same object). In contrast, ViLex enables several
DreamBooth tasks like image re-contextualization, artistic
rendition and accessorization, as illustrated in Figure A3,
Figure 5 and Figure 6, by simply prompting a frozen T2I
model with a combination of our visual prompts (i.e., ViLex
tokens) and natural language text prompts. This approach
does not require changes to the architecture of a pretrained
text-to-image generation model or any fine-tuning of the
T2I model itself. All tasks are performed in a zero-shot and
unsupervised manner.



