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Figure 6. Architecture of modules in the g3D-LF model. FC de-
notes a fully connected layer, LN denotes layer normalization and
LeakyReLU [38] is the activation function.

A. More Details of the g3D-LF Model

Model structure. Figure 6 illustrates the structure of main
modules in the g3D-LF model. Compared to HNR [57],
g3D-LF improve the MLP network for volume rendering
by adding residual connections and replacing ReLU with
LeakyReLU, which helps alleviate gradient explosion and
neuron death issues during HNR training. Since the num-
ber of k-nearest features is set to 4 and the dimension of
each aggregated feature is 768, the input dimension of both
MLPview and MLPBEV networks is 3072. As shown in Fig-
ure 6, all transformer-based encoders consist of four-layer
transformers.

Settings of novel view prediction. For each sampled point
in the rendered ray, we set the search radius for k-nearest
features as 0.5 meter. Using sparse sampling [57], if no
nearby feature points are found within a sampled point’s
search radius, the latent feature and volume density are set
to zero. The rendered ray is uniformly sampled from 0 to
10 meters, and the number of sampled points is set as 501.
After volume rendering, the number of rays within a novel
view is set as 12×12.

Settings of BEV map prediction. The search radius for
k-nearest features is set as 0.4 meter. The rendered ray is
uniformly sampled from 0 to 1.6 meters (i.e., vertically from
the camera’s position to bottom), and the number of sampled
points is set as 17. After volume rendering, the number of
rays within a BEV map is set as 168×168.

Loss functions. As illustrated in Figure 7 and 8, we present
the code for the primary loss functions used in g3D-LF pre-
training to provide further details. During training, we apply

def focal_loss(self, inputs, targets, focal_rate=0.1, focal_weight=1.):
ce_loss = F.cross_entropy(inputs, targets, reduction='none')
focal_num = max(int(focal_rate * targets.shape[-1]),1)
focal_loss = ce_loss.mean() + torch.topk(ce_loss.view(-
1),focal_num)[0].mean() * focal_weight
return focal_loss

def sim_matrix_cross_entropy(self, sim_matrix):
logpt = F.log_softmax(sim_matrix, dim=-1)
logpt = torch.diag(logpt)
nce_loss = -logpt
sim_loss = nce_loss.mean()
return sim_loss

def contrastive_loss(self, fts_1, fts_2, logit_scale=10.):
sim_matrix = logit_scale * torch.matmul(fts_1, fts_2.t())
sim_loss1 = self.sim_matrix_cross_entropy(sim_matrix)
sim_loss2 = self.sim_matrix_cross_entropy(sim_matrix.T)
sim_loss = (sim_loss1 + sim_loss2)
return sim_loss

Figure 7. PyTorch implementation of loss functions for the balanced
object semantic alignment and the CLIP knowledge distillation.

constant coefficients to balance the contributions of each loss,
ensuring they remain within the same order of magnitude.

B. Visualization of the Training Data
As shown in Figure 9, we present a 3D scene from our dataset
along with some associated language annotations (scene
00800-TEEsavR23oF from HM3D [46]). The instance-level
point cloud precisely annotates instances within the 3D
scene, allowing retrieval of language annotations for any
position by calculating its neighboring instance points and
using the instance IDs.

C. Visualization of the g3D-LF model
As shown in Figure 10 and 11, the g3D-LF model query
targets with language on the BEV map. In Figure 10, the left
side of each example shows the position of the ground-truth
target, while the right side displays the result of querying
objects on rays of the BEV map during navigation. The BEV
map accurately recognizes both large objects, like window
and sofa, and smaller objects, like table lamp and tap, by
calculating the cosine similarity between ray representations
and target text features.

In Figure 11, the left side of each example shows the posi-
tion of the objects, the middle is the ground-truth position of
the long text that contains the target object, while the right
side displays the result of querying the long text on the BEV
map during navigation. In the 3D scene, multiple objects of
the same category often appear. With the excellent ability
to understand long texts, our g3D-LF model can achieve
more fine-grained long-text queries, distinguishing different
instances of the same object category.



def fine_grained_contrastive_loss(self, batch_visual_fts, batch_text_fts, logit_scale=10.):
batch_visual_fts = batch_visual_fts / (torch.linalg.norm(batch_visual_fts, dim=-1, keepdim=True) + 1e-7)
batch_sim_score = []
for batch_id in range(len(batch_text_fts)):

text_fts = batch_text_fts[batch_id]
text_fts = text_fts[torch.abs(text_fts).sum(-1) != 0]
text_fts_length = text_fts.shape[0]
text_fts = text_fts / torch.linalg.norm(text_fts, dim=-1, keepdim=True)
sim_matrix = logit_scale * torch.matmul(batch_visual_fts, text_fts.t())
sim_matrix = sim_matrix.view(batch_visual_fts.shape[0],-1)
sim_score =  torch.topk(sim_matrix,text_fts_length, dim=-1)[0].mean(dim=-1).view(1,-1)
batch_sim_score.append(sim_score)

batch_sim_score = torch.cat(batch_sim_score,dim=0)
sim_loss1 = self.sim_matrix_cross_entropy(batch_sim_score)
sim_loss2 = self.sim_matrix_cross_entropy(batch_sim_score.T)
sim_loss = (sim_loss1 + sim_loss2)
return sim_loss

Figure 8. PyTorch implementation of loss function for the fine-grained contrastive learning.

Instance ID: 132
Object category: dining table
Language description：The dining table is in 
the kitchen, close to the refrigerator and sink.

Instance ID: 349
Object category: bed
Language description：A rustic wooden bed is 
dressed with a white striped comforter, on both sides 
of this bed are nightstands with lamps.

Instance ID: 568
Object category: table lamp
Language description：A white 
table lamp sits on the side table 
next to the leather sofa.

Instance ID: 45
Object category: TV
Language description：The TV on the wall 
is positioned above the fireplace, directly 
facing the leather sofa, with windows on 
both sides.

Instance ID: 684
Object category: potted plant
Language description：The potted 
plant is placed on the cabinet, 
positioned in front of a painting,
and faces the table and chairs.

Figure 9. Demonstration of a 3D scene in the training data. Instance-level point clouds mark all instances with object categories, and some
instances enriched with language descriptions.
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Figure 10. Visualization of querying objects on rays of the g3D-LF’s BEV map. The left side of each example is GT, and the right side is the
query result. Please zoom in for a better view.



chair The chair with a blue pillow. The chair with a blue pillow.

lamp

The lamp is situated above 
the carpet, which is to the 
left of the dresser.

The lamp is situated above 
the carpet, which is to the 
left of the dresser.

Figure 11. Visualization of querying long texts on the BEV map of our g3D-LF. Each example has the object’s GT on the left, the long text
GT in the middle, and the query result of the long text on the right. Please zoom in for a better view.
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