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Supplementary Material

A. Additional Model Outputs
In continuation of the demonstrations seen in Figure 1, we
further show a variety of object additions performed by
our model in Figure S8. The editing results showcase the
model’s ability to not only add a diverse assortment of ob-
jects and object types but also to integrate them seamlessly
into images, ensuring the images remain natural and ap-
pealing. Additionally, in Figure S9, we provide an example
of our model’s capability to generate diverse results for the
same edit using different seeds.

B. General Editing
As detailed in Section 6, the model, trained on the combined
IP2P and PIPE dataset, achieves new state-of-the-art scores
for the general editing task. In Figure S11, we present a
visual comparison that contrasts our model’s performance
with that of a model trained without the PIPE dataset. The
results not only underscore our model’s superiority in ob-

ject additions but also demonstrate its effectiveness in en-
hancing outcomes for other complex tasks, such as object
replacement.

We further analyze this model by testing its performance
not on the entire MagicBrush dataset as in Section 6, but
on the ’addition only’ subset (discussed in Section F.1) and
its complementary ’not addition’ subset. The experiments
are performed under the same configuration as Section 6.
Results for the addition subset and the complementary sub-
set are presented in Table S7. In both subsets, our model
outperforms the other models, indicating that although our
dataset focuses on adding instructions, the inclusion of a
large amount of high-quality editing data enhances perfor-
mance for general editing tasks as well.

C. Multiple Object Addition
A straightforward extension of our model allows for adding
multiple objects by applying it recurrently, each time with a
different addition prompt. However, this approach poses
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Figure S8. Additional Object Addition Results of the Proposed Model. The first two rows showcase outcomes from the model trained
only with the PIPE dataset. The last row presents results from the same model after fine-tuning on the MagicBrush training set, as detailed
in Section 5.2.



Addition Subset Non-Addition Subset

Methods L1↓ L2↓ CLIP-I↑ DINO↑ CLIP-T↑ L1↓ L2↓ CLIP-I↑ DINO↑ CLIP-T↑

IP2P .100 .031 .860 .700 .289 .114 .038 .839 .742 .290
IP2P FT .077 .028 .902 .867 .306 .083 .032 .895 .841 .300
Ours + IP2P FT .069 .024 .913 .889 .308 .075 .027 .905 .862 .303

Table S7. Global Editing Performance on Addition and Non-Addition MagicBrush Subsets. Evaluation of our global editing model
performance on both the add and complementary non-add instruction subsets of MagicBrush. The model, trained on the combined PIPE
and IP2P datasets and fine-tuned on the MagicBrush training set, surpasses IP2P and the fine-tuned IP2P models in both subsets.

Add a tattoo

source

Figure S9. Editing Diversity. We generated three distinct edited
images from the same source image, demonstrating the diversity
of our model’s outputs.

a challenge because each object addition requires a de-
code–encode cycle through the Stable Diffusion variational
autoencoder (VAE), where each pass degrades image qual-
ity (see Fig. S15). To mitigate this, we perform all edits
in latent space—encoding only before the first addition and
decoding only after the final addition. Fig. S10 illustrates
this process, demonstrating the successful addition of ob-
jects without intermediate decoding.

D. Limitations

Despite the impressive results produced by our model, sev-
eral limitations remain. First, while our data curation
pipeline improves robustness during the removal phase, it
is not entirely error-free. Additionally, the model struggles
with significant changes occurring far from the object but
are affected by it. For instance, it handles nearby effects,
like TV shadows (see Fig. S12), but struggles with larger
shadows or distant reflections, as seen in the center images
of Fig. S12. Similarly, object-object interactions are not
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Figure S10. Multiple objects. Example of multiple object addi-
tion using latent editing, where successive objects are added with-
out intermediate decoding and encoding.

always accurately handled (see the right images in the fig-
ure). These challenges stem from the dataset construction,
as our method minimizes alterations outside the near-object
region. Future work could explore inpainting both the ob-
ject and distant regions influenced by it. We hope our work
inspires future research to address these limitations.

E. PIPE Dataset

E.1. Creating Source-Target Image Pairs

We offer additional details on the post-removal steps de-
scribed in Section 3.1. The post-removal process involves
assessing the CLIP similarity between the class name of the
removed object and the inpainted area. This assessment
helps evaluate the quality of the object removal, ensuring
no objects from the same class remain. To measure CLIP
similarity for the inpainted area only, we counter the chal-
lenge of CLIP’s unfamiliarity with masked images by re-
ducing the background’s influence on the analysis. We do
this by adjusting the background to match the image’s aver-
age color and integrating the masked area with this unified
background color. A dilated mask smoothed with a Gaus-
sian blur is employed to soften the edges, facilitating a more
seamless and natural-looking blend.

To complement the CLIP score similarity, we introduce
an additional measure that quantifies the shift in similar-
ity before and after removal. Removals with a high pre-
removal similarity score, followed by a comparatively lower



IP2P
FT

PIPE + IP2P 
FT 

IP2P
FTOriginal PIPE + IP2P 

FT Original

Let the toilet bowl have a lid.

Let’s add a drawing of a girl to the wall.

Add drawing to the refrigerator

Replace the dove with an owl.

Make the drinks blue.

What if he was with a backpack?

Have there be a model posing next to the sheep

Make the bust a fire truck.

Figure S11. Visual Comparison on General Editing Tasks. The contribution of the PIPE dataset when combined with the IP2P dataset
for general editing tasks, as evaluated on the full MagicBrush test set. The comparison is between a model trained on these merged datasets
and a model trained solely on the IP2P dataset, with both models fine-tuned on the MagicBrush training set. The results demonstrate that,
although the PIPE dataset focuses solely on object addition instructions, it enhances performance across a variety of editing tasks.
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Figure S12. Limitations. Left: Successful shadow generation near the object. Center: Failures in generating shadows or reflections when
distant from the object. Right: Failure in changing hand posture and maintaining the original one.
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Figure S13. Additional PIPE Datasets Examples.

Figure S14. Pre-Removal Filtered Examples. Left: Objects with non-
informative view and low CLIP Object similarity. Right: Extremely small
and large objects, unsuitable for our dataset.

Figure S15. Consistency Enforcement Examples. From
left to right: original image, inpainted dog image, in-
painted image after alpha blending.

yet significant post-removal score are not filtered, even
though they exceed the threshold. This method allows for
the efficient exclusion of removals, even when other objects
of the same class are in close spatial proximity.

Figure S21 and Figure S22 present the figures discussed
in Section 3.1 related to filtering thresholds and their justi-
fication. Table S8 reports the number of images before and
after each filtering stage.

Table S8. Statistics on the dataset before and after each Filter-
ing step.

Initial Pre-Removal Consensus MM CLIP Importance

4,646K 1,494K 1,101K 986K 888K

E.2. VLM-LLM Based Instructions
Using a VLM and an LLM, we convert the class names
of objects from the segmentation dataset into detailed
natural language instructions (Section 3.2). Initially, for
each image, we present the masked image (featuring only
the object) to CogVLM with the prompt: “Accurately
describe the main characteristics of

the <class name>. Use few words which
best describe the <class- name>”. This
process yields an in-depth description centered on the
object, highlighting key attributes such as shape, color, and
texture. Subsequently, this description is provided to the
LLM along with human-crafted prompts for In-Context
Learning (ICL), to generate succinct and clear instructions.
The implementation of the ICL mechanism is detailed in
Table S9.

Furthermore, we enrich the instructions by including a
coarse language-based description of the object’s location
within the image, derived from the given mask. To accom-
plish this, we split the image into a nine-section grid and
assign each section a descriptive label (e.g., top-right). This
spatial description is then randomly appended to the instruc-
tion with a 25% probability during the training process.

E.3. Integrating Instruction Types

As detailed in Section 3.2, we construct our instructions us-
ing three approaches: (i) class name-based (ii) VLM-LLM
based, and (iii) manual reference-based. These three cate-



Table S9. In-Context Learning Prompt. (Top) We provide the model with five examples of captions and their corresponding human-
annotated responses. (Bottom) We introduce it with a new caption and request it to provide an instruction.

[USER]: Convert the following sentence into a short image addition instruction:
¡caption 0¿.
Use straightforward language and describe only the ¡class name 0¿.
Ignore surroundings and background and avoid pictorial description.
[ASSISTANT]: ¡example response 0¿
...
[USER]: Convert the following sentence into a short image addition instruction:
¡caption 4¿.
Use straightforward language and describe only the ¡class name 4¿.
Ignore surroundings and background and avoid pictorial description.
[ASSISTANT]: ¡example response 4¿

[USER]: Convert the following sentence into a short image addition instruction:
¡new caption¿.
Use straightforward language and describe only the ¡new class name¿.
Ignore surroundings and background and avoid pictorial description.
[ASSISTANT]:

gories are then integrated to assemble the final dataset. The
dataset includes 887,773 instances each from Class name-
based and VLM-LLM-based methods, with an additional
104,373 from Manual reference-based instructions.

E.4. Additional Examples
In Figure S13, we provide further instances of the PIPE
dataset that complement those in Figure 5.

F. Implementation Details
As noted in Section 4, the training of our editing model is
initialized with the SD v1.5 model. Conditions are set with
cT = ∅, cI = ∅, and both cT = cI = ∅ occurring with
a 5% probability each. The input resolution during training
is adjusted to 256, applying random cropping for variation.
Each GPU manages a batch size of 128. The model under-
goes training for 60 epochs, utilizing the ADAM optimizer.
It employs a learning rate of 5 · 10−5, without a warm-up
phase. Gradient accumulation is set to occur over four steps
preceding each update, and the maximum gradient norm is
clipped at 1. Utilizing eight NVIDIA A100 GPUs, the total
effective batch size, considering the per-GPU batch size, the
number of GPUs, and gradient accumulation steps, reaches
4096 (128 · 8 · 4).

For the fine-tuning phase on the MagicBrush training set
(Section 5.2), we adjust the learning rate to 10−6 and set the
batch size to 8 per GPU, omitting gradient accumulation,
and train for 250 epochs.
F.1. MagicBrush Subset
To initially focus our analysis on the specific task of ob-
ject addition, we applied an automated filtering process to

the MagicBrush dataset. This process aims to isolate image
pairs and associated instructions that exclusively pertained
to object addition. To ensure an unbiased methodology, we
applied an automatic filtering rule across the entire dataset.
The filtering criterion applied retained instructions explic-
itly containing the verbs ”add” or ”put,” indicating object
addition. Concurrently, instructions with ”remove” were
excluded to avoid object replacement scenarios, and those
with the conjunction ”and” were omitted to prevent cases
involving multiple instructions.

F.2. Evaluation

In our comparative analysis in Section 5.2, we assess our
model against leading instruction-following image editing
models. To ensure a fair and consistent evaluation across all
models, we employed a fixed seed (0) for all comparisons.

Our primary analysis focuses on two instruction-guided
models, IP2P [4] and Hive [73]. For IP2P, we utilized the
Hugging Face diffusers model and pipeline3, adhering to
the default inference parameters. Similarly, for Hive, we
employed the official implementation provided by the au-
thors4, with the documented default parameters.

Our comparison extends to models that utilize global
descriptions: VQGAN-CLIP [9] Null-Text-Inversion [41],
Pix2PixZero [46], Edit-Freindly DDPM [22] and
SDEdit [40]. These models were chosen for evalua-
tion within the MagicBrush dataset, as global descriptions
are not available in both the OPA and our PIPE dataset. For

3https://hf.co/docs/diffusers/training/instructpix2pix
4https://github.com/salesforce/HIVE

https://hf.co/docs/diffusers/training/instructpix2pix
https://github.com/salesforce/HIVE
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Figure S16. Visual Comparison of the Proposed Model on PIPE Test Set. The visual evaluation highlights the effectiveness of our
method against other leading models on the PIPE test set. Our model excels in adhering closely to specified instructions and accurately
generating objects in terms such as style, scale, and location.
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Figure S17. Visual Comparison of the Proposed Model on MagicBrush Test Subset. Our method versus leading models within
the MagicBrush object addition test subset. It illustrates our model’s superior generalization across varied instructions and datasets,
outperforming the other approaches.
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Figure S18. Model Consistency-Instruction Trade-off: Trade-
off between consistency with the input image (Y-axis) and edit
adherence (X-axis) for IP2P and our model on the MagicBrush
test subset. Text guidance is fixed at 7, and image guidance ranges
from 1 to 2.5.
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Figure S19. Finetuned-Model Consistency-Instruction Trade-
off: Trade-off between consistency with the input image (Y-axis)
and edit adherence (X-axis) for IP2P and our model, both fine-tuned
on the MagicBrush training set and tested on its test subset. Text
guidance is fixed at 7, and image guidance ranges from 1 to 2.5.



Model VQGAN-CLIP SDEdit NTI P2P-Z EFD Hive IP2P Ours

VQAScore 0.7675 0.6114 0.6008 0.5356 0.6792 0.5822 0.5408 0.7045

Table S10. VQAScore Metric. We use VQAScore [34] as a VQA-based alignment metric to further evaluate our method.
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Figure S20. Comparison to FLUX-Based Method. We com-
pared our model to a FLUX-based approach, specifically the re-
cently released FlowEdit [27]. As shown in the plot, our model
significantly outperforms FlowEdit.

VQGAN-CLIP5, Null-Text-Inversion6 and Edit-Freindly
DDPM7, we used the official code base with the default
hyperparameters. For SDEdit8 and Pix2PixZero9, we used
the image-to-image pipeline of the Diffusers library with
the default parameters.

We also evaluated our fine-tuned model against the Mag-
icBrush fine-tuned model, as documented in [72]. Al-
though this model does not serve as a measure of gen-
eralizability, it provides a valuable benchmark within the
specific context of the MagicBrush dataset. For this com-
parison, we employed the model checkpoint and parame-
ters as recommended on the official GitHub repository of
the MagicBrush project10. In Figure S16 and Figure S17,
we provide additional qualitative examples on the tested
datasets to complement the ones in Figure 3. We further
assess the model’s performance on the MagicBrush subset
using the same CLIP Image similarity versus Directional
CLIP similarity measure, as explained in Section 6. We plot
this measure to compare the IP2P model with our model in
Figure S18 and the MagicBrush fine-tuned models in Fig-
ure S19. As shown in both comparisons, our models present

5https://github.com/nerdyrodent/VQGAN-CLIP
6https://github.com/google/prompt-to-prompt/blob/main/

null_text_w_ptp.ipynb
7https://github.com/inbarhub/DDPM_inversion
8https://hf.co/docs/diffusers/en/api/pipelines/stable_

diffusion/img2img
9https://hf.co/docs/diffusers/main/en/api/pipelines/

pix2pix_zero
10https://github.com/OSU-NLP-Group/MagicBrush
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Figure S21. Concensus Filtering Success for varying Thresh-
olds

.000 .040 .080 .120 .160
Filtered Images Percentage

.796

.798

.800

.802

.804

.806

.808

.810

Su
cc

es
sf

ul
 In

pa
in

tin
g 

 P
er

ce
nt

ag
e 0.260
0.265

0.270
0.275

0.280

0.285
0.290

0.295

Figure S22. Multimodal CLIP Filtering Success for varying
Thresholds

a better trade-off between consistency with the input image
and adherence to the edit instruction, achieving higher con-
sistency with the instruction for the same similarity to the
input image.

To further evaluate our method with more advanced met-
rics, we extend Table 2 and report the VQAScore [34], as
shown in Table S10. Under this metric, our approach main-
tains its favorable performance, except for VQGAN-CLIP,
which, as discussed in Section 5.2, tends to deviate sub-
stantially from the original image. Furthermore, we extend
Figure 6 by adding a comparison between our model and a
FLUX-based [30] approach, the recently released FlowEdit
[27], demonstrating superior performance.

G. Instructions Ablation
We examine the impact of employing our VLM-LLM
pipeline, detailed in Section 3.2, for generating natural lan-
guage instructions. The outcomes of the pipeline, termed
”long instructions”, are compared with brief, class name-
based instructions (e.g., “Add a cat”), referred to as
”short instructions”. In Table S11, we assess a model

https://github.com/nerdyrodent/VQGAN-CLIP
https://github.com/google/prompt-to-prompt/blob/main/null_text_w_ptp.ipynb
https://github.com/google/prompt-to-prompt/blob/main/null_text_w_ptp.ipynb
https://github.com/inbarhub/DDPM_inversion
https://hf.co/docs/diffusers/en/api/pipelines/stable_diffusion/img2img
https://hf.co/docs/diffusers/en/api/pipelines/stable_diffusion/img2img
https://hf.co/docs/diffusers/main/en/api/pipelines/pix2pix_zero
https://hf.co/docs/diffusers/main/en/api/pipelines/pix2pix_zero
https://github.com/OSU-NLP-Group/MagicBrush


Short
Instructions

Long
Instructions

Short
InstructionsOriginal Long

Instructions

Add red Mercedes-Benz bus with a large front  
windshield and an extended rear section

Original

Let's add a black bear to the stream. 

Figure S23. Instructions Ablation Examples. Qualitative comparison of model performance when trained on ’short’ template-based
instructions versus ’long’ instructions generated through our VLM-LLM pipeline. Models trained on the latter exhibit superior performance
in interpreting complex instructions and closely aligning object additions with editing requests.

Train Instructions Type L1 ↓ L2 ↓ CLIP-I ↑ DINO↑ CLIP-T ↑
Short Instructions 0.083 0.028 0.900 0.856 0.300
Long Instructions 0.072 0.025 0.900 0.852 0.302

Table S11. Instructions Ablation Analysis. A quantitative comparative analysis of model performance, comparing training on ’short’
class-based instructions to ’long’ instructions generated using the VLM and LLM pipeline. This analysis was performed on MagicBrush
subset. The results demonstrate that training with VLM-LLM-based instructions significantly enhances performance, thereby confirming
its effectiveness.

trained on the PIPE image pairs, comparing its performance
when trained with either long or short inputs. The models
are evaluated on MagicBrush subset. As expected, train-
ing with long instructions leads to improved performance
on MagicBrush. This demonstrates that training with com-
prehensive instructions generated by our VLM-LLM mech-
anism benefits at inference time. In addition to quantitative
results, we provide qualitative results of both models in Fig-
ure S23. As illustrated, the model trained with long instruc-
tions shows superior performance in interpreting complex
instructions that include detailed descriptions and location
references, such as ”Let’s add a black bear to the stream”.

H. Human Evaluation

While quantitative metrics are important for evaluating im-
age editing performance, they do not fully capture human
satisfaction with the edited outcomes. To this end, we con-
duct a human evaluation survey, as explained in Section 5.4,
comparing our model with IP2P and hive (Tab. S12). Fol-
lowing [72], we pose two questions: one regarding the ex-
ecution of the requested edit and another concerning the
overall quality of the resulting images. Figure S24 illus-
trates examples from our human survey along with the ques-
tions posed. Overall, our method leads to better results for
human perception. Interestingly, as expected due to how
PIPE was constructed, our model maintains a higher level
of consistency with the original images in both its success
and failure cases. For example, in the third row of Fig-

Methods
Edit faithfulness Quality

Overall Per Overall Per-
[%] image [%] image

Hive 25.9 21 24.8 22
Ours 74.1 79 75.2 78

Table S12. Human Evaluation against Hive.

ure S24, while IP2P generates a more reliable paraglide, it
fails to preserve the original background.

I. Social Impact and Ethical Consideration
Using PIPE or the model trained with it significantly en-
hances the ability to add objects to images based on tex-
tual instructions. This offers considerable benefits, enabling
users to seamlessly and quickly incorporate objects into im-
ages, thereby eliminating the need for specialized skills or
expensive tools. The field of image editing, specifically
the addition of objects, presents potential risks. It could
be exploited by malicious individuals to create deceptive
or harmful imagery, thus facilitating misinformation or ad-
verse effects. Users are, therefore, encouraged to use our
findings responsibly and ethically, ensuring that their ap-
plications are secure and constructive. Furthermore, PIPE,
was developed using a VLM [65] and an LLM [24], with the
model training starting from a SD checkpoint [52]. Given
that the models were trained on potentially biased or ex-
plicit, unfiltered data, the resulting dataset may reflect these
original biases.
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Figure S24. Human Evaluation Examples. Examples of the qualitative survey against IP2P alongside the response distribution (our
method in red and the baseline in blue). The examples include both successful and failed cases of our model. The first three top examples
correspond with a question focused on the edit completion, and the three bottom ones on the resulting image quality.
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