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1. Supplementary Experimental Details
In this supplementary document, we provide additional in-
sights into the dataset we used, extra results from our exper-
iments, which were omitted from the paper due to page lim-
itations. This document also includes experimental details
and descriptions of evaluation metrics. We hope this sup-
plementary information will assist the scientific community
in understanding and replicating our research more effec-
tively.

1.1. Datasets
Table 1 provides an overview of the datasets. The following
paragraphs provide more specific information about each
dataset.
1. The Multi-organ Nucleus Segmentation (MoNuSeg)

[4] dataset contains H&E-stained histopathology images
from 30 patients with tumors of the liver, kidney,
prostate, bladder, breast, colon, and stomach organs,
captured at 40 magnification. The dataset comprises
44 images, each with dimensions of 1000 by 1000
pixels containing 29,000 nuclear boundary annota-
tions. For the purpose of training and evaluation, the
MoNuSeg dataset consists of 30 images allocated for
training and an additional 14 images reserved for testing.

2. The 2018 Data Science Bowl (DSB) [2] dataset
encompasses a diverse collection of segmented nuclei
images acquired under various conditions and from
different organisms. The primary objective of this
dataset is to challenge the generalization capabilities
of models across these diverse variations. It includes
670 nuclei images, each accompanied by a segmented
mask that corresponds to a single nucleus, with strict
non-overlapping criteria between masks. The images
have dimensions ranging from 128 x 128 to 512 × 512
pixels. The DSB dataset is bifurcated into two stages
for training and testing purposes. In the first stage, there
are 670 nuclei-segmented images and masks utilized for

training, along with an additional 65 annotated images
dedicated to testing. Subsequently, the second stage
comprises an exclusive set of 3019 images meant solely
for testing. In the development of our model, we solely
relied on the stage 1 training set due to the unavailability
of publicly accessible ground truth masks for stage 1
and stage 2 testing.

Table 1. Overview of datasets and their distribution.

Dataset Biomarker
# Images

-
Train / Test

Classes Image Size

After Offline
Augmentation

-
Train

MoNuSeg Nuclei 30 / 14 2 1000x1000 8820
DSB Nuclei 603 / 67 2 128x128 - 512x512 13710
EM Mitochondria 165 / 165 2 768x1024 9852
TNBC Nuclei - / 50 2 512x512 -

3. Electron Microscopy (EM) [5] dataset features
annotated mitochondria from the CA1 hippocampus
region of the brain, corresponding to a 1065x2048x1536
volume. This dataset is divided into two sub-volumes,
each containing the first 165 slices of the image stack.
The training and testing sets each contain 165 images
with corresponding masks, with a size of 768x1024
pixels. Each voxel has a resolution of approximately
5x5x5 nm, and the data is provided in a multipage TIF
format.

4. The Triple-negative breast cancer (TNBC) [6] dataset
contains 50 H&E-stained breast histopathology images
and their corresponding masks, each of dimension 512
× 512 pixels. There are 4022 annotated cell nuclei in
the dataset. We use the TNBC dataset only for testing to
evaluate the generalization capacity of the network.

1.2. Data Augmentation
We use Albumentations [1] and TensorFlow built-in Im-
ageDataGenerator for online augmentations. The details of
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Table 2. Summary of Data Augmentations

Type Argument / Value Type Argument / Value
RandomBrightnessContrast p=1.0 rotation range 90
GridDistortion p=1.0 width shift range 0.3
Transpose p=1.0 height shift range 0.3

Offline ElasticTransform p = 1, alpha = 120, sigma = 120 ∗ 0.05, alpha affine = 120 ∗ 0.03 Online shear range 0.5
RandomCrop p=1.0 zoom range 0.3
- - horizontal flip True
- - vertical flip True

Figure 1. (a) Prediction with non overlapping patches IoU = 64.3%
(b) Prediction with overlapping patches IoU = 65%

the data augmentations are shown in Table 2. For testing
the overlapping patch technique was chosen to avoid the
checkerboard effect seen with non-overlapping patches in
some cases, as demonstrated in Figure 1.

1.3. Additional Qualitative Results
We provide additional qualitative results in Figure 2, to
demonstrate the performance of each model on a diverse
range of samples. We selected good, average, and bad sam-
ples based on an IoU threshold of 0.5 from models trained
on the dataset separately. We highlight the over-segmented
or falsely segmented areas with a red box. As you can ob-
serve, our model performs comparatively better under all
diverse conditions.

1.4. Evaluation Metrics
To evaluate state-of-the-art deep learning methods and our
proposed work, we have used standard evaluation metrics
[3]. All the evaluation metrics are reported by calculating
each evaluation metric for each prediction and taking
the average over all samples in the test set. Following
evaluation metrics are used:

1. Intersection over Union (IoU) [4] is defined as

IoU =
TP

TP + FP + FN
(1)

Where TP are True Positives , FP are False Positives,
and FN are False Negatives. Intersection = TP, and

Union = TP + FP + FN.

2. Dice Coefficient (DSC) [7] is defined as

DSC =
2× TP

2× TP + FP + FN
(2)

3. Precision (Prec.) is defined as:

Precision =
TP

TP + FP
(3)

4. Recall (Rec.) is defined as:

Recall =
TP

TP + FN
(4)

5. False Omission Rate (FOR) in binary semantic seg-
mentation is the ratio of false negative predictions to the
total number of negative predictions. This metric in-
dicates the likelihood that a pixel predicted as negative
by the model actually belongs to the segment. A higher
false omission rate suggests the model may be missing
relevant segments, leading to under-segmentation, while
a lower FOR implies better accuracy in identifying true
negatives. The False Omission Rate is defined as:

False Omission Rate =
FN

FN + TN
(5)

6. 95th Percentile Hausdorff Distance (HD95) is a met-
ric used to measure the similarity between two sets of
points, typically in the context of segmentation. It com-
putes the 95th percentile of the distances from each point
in one set to its nearest point in the other set. This
measure helps mitigate the impact of outliers or noise
in the segmentation. A lower HD95 indicates a closer
match between the predicted and ground truth segmen-
tations, suggesting better model performance, while a
higher HD95 might point to greater discrepancies or mis-
alignments. HD95 is defined as:

HD95AB = percentile95

(
min
b∈B

d(a, b)

)
,∀a ∈ A

HD95BA = percentile95

(
min
a∈A

d(b, a)

)
,∀b ∈ B

HD95 = max(HD95AB , HD95BA)

(6)



Figure 2. Additional Qualitative Results Comparison: Black pixels represent the background, while white pixels represent the biomarker.
The red box indicates the region where there is either no prediction or over-segmentation.

Where: d(a, b) represents the Euclidean distance be-
tween two points a and b. The ‘percentile 95‘ function
returns the 95th percentile of the distances. The ‘max‘
function computes the larger value among HD95 AB
and HD95 BA.

7. Average Surface Distance (ASD) is a metric used in
binary semantic segmentation to measure the average
distance between the surfaces of predicted and ground
truth segments. This metric assesses how well the
model’s predicted object boundaries align with those of

the ground truth, focusing on the geometric accuracy of
the segmentation. A lower ASD value indicates a closer
match between the predicted and ground truth surfaces,
suggesting a more accurate delineation of object bound-
aries. A higher ASD could suggest greater discrepan-
cies, indicating potential misalignments or less accurate



segmentation. ASD is mathematically defined as:

ASD =
1

|A|+ |B|

(∑
a∈A

min
b∈B

d(a, b) +
∑
b∈B

min
a∈A

d(b, a)

)
(7)

Where: A represents the set of points on the surface of
the predicted segments. B represents the set of points on
the surface of the ground truth segments. d(a, b) repre-
sents the Euclidean distance between two points a and
b.
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