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Supplementary Material

S1. Abstract

This supplementary material provides additional details and
analysis of our method. Implementation details and ablation
studies are presented in Sec. S2 and Sec. S3. We discuss
the fusion of outputs from different captioners and provide
qualitative comparisons under challenging lighting condi-
tions in Sec. S4. The impact of the vocabulary mapper on
segmentation evaluation is analyzed in Sec. S5. Additional
qualitative results are shown in Sec. S6. Finally, the nomen-
clature used throughout the paper is summarized in Sec. S7.

S2. Implementation Details

Image Captioner. We generate the image-based vocabu-
lary with the xGen-MM (BLIP-3) [56] model using a tem-
perature of 0.05, number of beams set to 5 and top-p set to
the default value, 1. Our prompt is “Briefly describe all ob-
jects in the <image>. Be concise. Only name the object
names.”, where <image> refers to the image token.

Caption Module in Point Captioner. We follow Lidar-
CLIP [17] to use the pre-trained caption model from Clip-
Cap [34] as our captioning decoder. It decodes a CLIP fea-
ture vector to one caption.

Segmenter. We exploit OpenSeg [15] model and CLIP text
encoder [39] as our image encoder hhr

im and text encoder
htx, respectively. We employ as our point encoder Open-
Scene [38] with its released OpenSeg pre-trained weights
on nuScenes [4] and ScanNet [14], respectively. We also
follow the inference phase of OpenScene where dot pro-
duction is used as similarity metric SIM.

SMAP. We employ mean square error (MSE) as our loss
function. The number of views J for SMAP is varying.
During training, it is set the same as the number of im-
ages per point cloud, which is six for nuScenes [4] and vari-
able for ScanNet [14]. During inference, it is set to 12 for
nuScenes, indicating each point subset occupies a sector of
30 degrees. For ScanNet, each point cloud is divided into
0.5m×0.5m squares according to their x and y coordinates
and then each square is treated as a view.

Training. To train SMAP, we use Adam [29] as the opti-
mizer with an initial learning rate of 1e − 5. The learning
rate is decreased following the polynomial learning rate pol-
icy [33] with a decay of 0.9. The SMAP has trained 20 and
10 epochs for nuScenes [4] and ScanNet [14].

Table S1. Ablation study of Image Captioner on nuScenes [4]
and ScanNet [14]. CN (Compound Nouns) means allowing to use
continuous two or more words as a query, e.g. asphalt road.

Ablation
Target Setting nuScenes [4] ScanNet [14]

TPSS mIoU TPSS mIoU

VLM
BLIP [26] 8.53 27.24 3.27 37.17
RAM [65] 8.70 34.14 3.30 38.59
xGen-MM [56] 8.72 33.75 3.37 40.27

CN xGen-MM [56] + CN 8.78 34.56 3.49 44.38

Table S2. Ablation study of Point Captioner on nuScenes [4].
T is a hyperparameter indicating the number of point cloud areas.
LidarCLIP [17] employs a 2D global positional encoding to gen-
erate a single global caption, whereas our method utilizes a 3D
local positional encoding combined with SMAP, allowing flexible
control over the number of point cloud areas to caption.

Method
T

in SMAP
Positional
Encoding

TPSS mIoU

LidarCLIP - 2D global 6.25 20.58

Ours w/o. PE 12 ✗ 8.61 30.89

Ours

1

3D local

6.32 17.94
6 8.66 29.45
12 8.80 33.42
24 8.77 32.96

Table S3. Ablation study of Point Captioner on ScanNet [14].

Pillar Size (m2) Num. of Pillars per Scene TPSS mIoU

Ours 0.5×0.5 87.3 3.71 29.25
1×1 27.6 3.53 22.58

S3. Ablation Study

Ablation studies are conducted to validate our design
choices and hyperparameters.

Image Captioner. Table S1 presents the performance of
3D-AVS-Image using different image captioners. We be-
gin with BLIP [26], but observe that it often generates low-
quality nouns that are not semantically meaningful enti-
ties, such as side, front, or night. To address this limi-
tation, we replace it with RAM [65] and xGen-MM [56],
both of which produce more precise nouns and lead to im-
proved segmentation performance. Moreover, RAM out-
puts both single and compound nouns (e.g. car and asphalt
road), which inspires us to enhance BLIP3 with a compound
noun extraction technique that identifies consecutive nouns
within captions and treats them as an individual query. This
modification yields the best overall performance.



Table S4. IoU comparison on nuScenes [4]. For a quantitative comparison, we employ LAVE [70] to map auto-classes from an Unknown
Vocabulary (UV) to the nuScenes categories. Overall, 3D-AVS demonstrates a significant improvement over OpenScene [38], achieving
higher IoU scores on most individual labels, particularly for ambiguous classes such as drivable surface, terrain, and man-made.
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OpenScene [38] Official ✗ 30.1 9.2 16.3 67.2 70.4 16.4 62.6 47.6 4.0 5.3 52.0 39.3 0.0 18.1 0.2 17.5 56.2

3D-AVS
(Ours)

Image ✓ 34.6 13.1 20.1 67.6 65.5 25.0 58.9 2.5 5.5 2.8 61.6 52.7 0.3 16.8 40.2 55.4 65.0
LiDAR ✓ 33.4 8.6 0.1 64.2 72.3 21.2 57.6 44.4 4.6 2.4 55.2 63.1 0.1 12.7 22.8 52.1 53.3

I+L ✓ 36.2 12.3 5.9 65.1 72.2 25.5 64.2 18.0 7.1 4.8 56.7 68.2 0.2 20.0 41.4 53.5 64.4

Point Captioner. Table S2 shows the ablation studies of
the point captioner on the nuScenes [4] dataset. LidarCLIP
generates a single caption per scene, typically covering only
2–4 common categories (e.g. car and road). In contrast,
our optimal performance is achieved at T = 12 using a
3D relative positional encoding adapted from [50], which
we adopt as our final configuration. Both LidarCLIP and
our polar masking are tailored for rotating LiDAR scanners
and sparse outdoor data, making them unsuitable for in-
door datasets like ScanNet [14] and ScanNet200 [43]. We
instead divide the scene using vertical pillars and caption
each pillar. We find that a pillar size of 0.25 m2 yields
better performance (see Tab. S3). However, memory us-
age increases exponentially as pillar size decreases, so we
set 0.5m × 0.5m as the final resolution to avoid memory
issues.

S4. Impact of Captioner Fusion.

Quantitative Analysis. We report the segmentation re-
sults of 3D-AVS and its variants—using only the im-
age captioner (3D-AVS-Image) or the point captioner
(3D-AVS-Point)—on nuScenes and ScanNet in Tables S4
and S5. Table S4 presents class-wise IoU on nuScenes.
The improvements are particularly notable for ambigu-
ous categories such as drivable surface, terrain, and man-
made, with mIoU scores of 68.2, 41.4, and 55.4, respec-
tively—substantially outperforming OpenScene [38]. Ta-
ble S5 presents the segmentation results of 3D-AVS and its
variants on ScanNet. Due to the wide variety of objects in
ScanNet, 3D-AVS-LiDAR exhibits a performance drop, in-
dicating its limited capacity for recognizing diverse object
categories.

Impact of Captioner Fusion on Challenging Scenes. In
Sec. 5.2 and Fig. 5, we explored the text-point similar-
ity of generated vocabularies across various subsets of the
nuScenes [4] dataset. Our analysis indicates that in chal-

Table S5. IoU comparison on ScanNet [14] validation set.

Method Unknown
Vocabulary Label Set mIoU

3D-AVS
(Ours)

✓ Image 44.38
✓ LiDAR 29.25
✓ I+L 40.51

lenging conditions, such as night and rainy scenes, the point
captioner outperforms the image captioner. When the two
captioners are combined, referred to as 3D-AVS, the result-
ing vocabularies show the strongest alignment with the data.
To illustrate this qualitatively, we present three difficult ex-
amples from the night and rainy subsets in Fig. S1. These
examples clearly show that even in these demanding scenar-
ios, fusing the image and point captioners leads to more ef-
fective vocabulary generation, successfully identifying rel-
evant objects in the scene. Furthermore, our method dis-
covers additional object categories that were not originally
annotated in the dataset.

S5. Segmenation Performance in Relation to
Vocabulary Mapper.

In Sec. 5.3 and Tab. S5, we evaluated segmentation per-
formance using LAVE [70] on the nuScenes [4] and Scan-
Net [14] datasets. To investigate the impact of different vo-
cabulary mappers on segmentation performance, we com-
pare three automated mappers and a manually crafted map-
per on a subset of the ScanNet dataset in this section.

Automated Mapper. We evaluate segmentation perfor-
mance with three automated mappers:

• SentenceBERT [41], which maps generated categories to
target categories by measuring the similarity between two
text prompts.

• LAVE-Llama [70], a LLM-based Auto-Vocabulary Eval-
uation (LAVE) using Llama [1] as the core. This method



Image Captioner
Point Captioner
3D-AVS
Human-annotated

person, bush, car, fence, mailbox, headlight, road, trash, vehicle, streetlight, street light, tree, …
building, car, fence, house, man, road, sign, street, traffic light, truck, …
house, person, vehicle, bush, man, street light, sign, streetlight, fence, trash, headlight, road, traffic light, mailbox, tree, building, truck, street, car, …
traffic cone, car, drivable surface, sidewalk, terrain, manmade, vegetation

traffic light, sculpture, building, parking lot, trash can, pedestrian, truck, car, parking sign, street sign, bicycle lane marking, lamp post, streetlight, vehicle, tree, …
car, city street, lot, person, sidewalk, street scene, street sign, traffic light, …
person, lot, vehicle, lamp post, sidewalk, parking sign, streetlight, pedestrian, traffic light, tree, building, street sign, truck, sculpture, trash can, car, parking lot, …
pedestrian, car, trailer, truck, driveable surface, sidewalk, terrain, manmade, vegetation

person, building, car, road, streetlight, street light, tree , …
building, car, cement wall, fire hydrant, forest, front, gate, parking meter, road, street, traffic light, van, window, …
person, parking meter, gate, van, window, street light, streetlight, fire hydrant, cement wall, road, traffic light, front, tree, forest, building, street, car, …
pedestrian, barrier, traffic cone, car, construction vehicle, driveable surface, other flat, sidewalk, terrain, manmade, vegetation

Image Captioner
Point Captioner
3D-AVS
Human-annotated

Image Captioner
Point Captioner
3D-AVS
Human-annotated

Figure S1. Examples of captioners under challenging conditions. Even in challenging weather conditions, our method is capable of
generating useful descriptions of the scene, combining the strengths of both the image (when visual information is present) and the point
captioner (when geometric information is present). Green classes correspond to categories that overlap with human-annotated categories
provided in the dataset. Purple classes are additionally recognized by 3D-AVS which we deem plausible and useful.

Table S6. Comparison of automated mappers on ScanNet [14]
dataset.

Method Label Set
LAVE [70] Sentence

BERT [41]GPT-4o [37] Llama [1]

3D-AVS
(Ours)

Image 44.38 37.32 42.60
LiDAR 29.25 25.24 23.21
Image+LiDAR 40.51 34.54 39.01

queries Llama interactively to identify the most similar
target category for a given generated category.

• LAVE-GPT-4o, which extends LAVE by employing the
more powerful GPT-4o [37] as the core language model.

Experimental results demonstrate that GPT-4o achieves the
best mapping performance. Therefore, we report results us-
ing LAVE-GPT-4o as the mapper in the main text.

Manual Mapper. Given the impracticality of manual
mapping for large-scale datasets, we manually mapped the
automatically generated classes-125 in total-from a subset
of 10 scenes in ScanNet [14] to the 20 original categories.
The recalculated mIoU scores, detailed in Tab. S8, reveal
that the GPT-4o has demonstrated performance that is very
close to human level on this specific task.

Table S7. Comparison of automated mappers on nuScenes [4]
dataset.

Method Label Set
LAVE [70] Sentence

BERT [41]GPT-4o [37] Llama [1]

3D-AVS
(Ours)

Image 34.56 33.17 26.68
LiDAR 33.42 28.92 26.72
Image+LiDAR 36.22 33.68 28.67

Table S8. Mapper comparison on 10 ScanNet [14] validation
samples. The results indicated by subscripts for LAVE (L) map-
per with GPT-4o demonstrate performance comparable to manual
mapping (M ).

Method Modality mIoUL mIoUM

3D-AVS
(Ours)

Image 30.07 29.81
LiDAR 24.59 24.56
Image+LiDAR 31.93 31.45

S6. Qualitative Resutls

Figure 6 shows the qualitative results on the ScanNet [14]
dataset. The complex contextual input of indoor scenar-
ios leads to a much richer vocabulary. Notably, the chairs
around the table in Fig. 6 is misclassified as table, while
3D-AVS successfully segments them as dining chair.



(a) Input

(b) Pre-defined categories

(c) 3D-AVS (Ours)

Figure S2. Qualitative comparison between pre-defined cate-
gories and 3D-AVS on ScanNet Dataset [14]. 3D-AVS gener-
ates much more categories than pre-defined in ScanNet. With pre-
defined categories, the chair and table in the middle of the scene
are messed up while 3D-AVS outputs a better result with gener-
ated dining chair and dining table.

S7. Nomenclature

Method variables

htx CLIP text encoder

him CLIP image encoder

hhr
im CLIP image encoder (High resolution)

hpt CLIP point encoder

gtx Text encoder (used in TPSS calculation)

gpt Point encoder (used in TPSS calculation)

P Point cloud, P ∈ RN×3

pn n-th point

S Semantic space

I A group of images, I ∈ RK×H×W×3

dim Captions from images

dpt Captions from points

L Label set, L ∈ RM

lm m-th label

l̂n Predicted label for n-th point

Etx Text embeddings, E ∈ RM×C

em m-th text embedding

Fim Image feature embeddings, Fim ∈ RK×H×W×C

fk k-th image feature embedding

Fpt Point feature embeddings, Fpt ∈ RN×C

fn n-th point feature embedding

f im
n n-th point feature lifted from image

xn, yn, zn Cartesian coordinates of the n-th point

ρn Radius of the n-th point in a polar coordinate sys-
tem

φn Polar angle of the n-th point in a polar coordinate
system

B Binary masks for a point cloud, B ∈ RN×T or B ∈
RN×K

M The same as the transpose of B. Appears in figures,
M∈ RJ×N

btn t-th binary mask for n-th point



C Coordinates of a point cloud, C ∈ RN×3

F Features of a point cloud, F = Fpt ∈ RN×C

Q Query for MHA

K Key for MHA

V Value for MHA

F ′′ Output feature of SMAP, F ′′ ∈ RJ×C

SIM Similarity metric

Sn Similarity score for n-th point

Scalars

N Number of points

n Index of a point

K Number of images

k Index of a image

M Number of labels

m Index of a label

C Number of channels

T Number of point cloud area

t Index of an area

J Number of binary masks

j Index of a mask


