
EvEnhancer: Empowering Effectiveness, Efficiency and Generalizability for
Continuous Space-Time Video Super-Resolution with Events

Supplementary Material

A. Overview

In this supplementary material, we first elaborate on the
network architecture of the proposed EvEnhancer (Sec. B).
Then, more ablation studies are conducted including 1)
the multi-scale alignment in event-modulated alignment
(EMA), 2) the bidirectional recurrence in bidirectional re-
current compensation (BRC), 3) the attention mechanism
and positional encoding in local implicit video transformer
(LIVT), and 4) the hyper-parameter setting of our mod-
els (Sec. C). Next, we investigate the temporal consistency
of reconstructed frames by our EvEnhancer and compare
it with existing state-of-the-art methods (Sec. D). Finally,
more visual results on synthetic and real-world datasets are
provided (Sec. E).

B. Network Architecture

In EvEnhancer, there are three parts: 1) feature extraction,
2) event-adapted synthesis module (EASM), and 3) local
implicit video transformer (LIVT). Specifically, in the first
step, for the LR frames, we use one 5×5 convolutional layer
with LeakyReLU (LReLU) and 5 residual blocks to extract
RGB features. As for voxelized event segments, we use
the 3 × 3 convolution and another 5 residual blocks. The
EASM contains two parts: 1) event-modulated alignment
(EMA) and 2) bidirectional recurrent compensation (BRC)
propagates the event stream across time and fuses it with ac-
quired features in both directions to maximize the gathering
of temporal information.

In EMA, all the convolutional layers are with the kernel
size of 3 × 3 activated by LReLU. We use the deformable
convolutional network [14] for feature alignment. In BRC,
besides the first 5 × 5 convolution for event feature extrac-
tion and 1× 1 convolutions in the channel attention mecha-
nisms and feed-forward network [11], all the convolutional
layers are also with the kernel size of 3 × 3. In LIVT, we
use one 3 × 3 × 3 convolutional layer to extract the spa-
tiotemporal features. Then, another three 3D convolutions
with the same kernel size are used to get the key K, query
Q, and value V , where the temporal selection scheme is il-
lustrated in Figure i. Finally, we use a 5-layer MLP with
[256, 256, 256, 256, 3] dimensions and GELU activations to
produce the HR and HFR frames. In this work, we im-
plement two model variants EvEnhancer and EvEnhancer-
light. For the former, we set the number of event segments
M = 7 and all the convolutional layers have 64 channels.
For EvEnhancer-light, we reduce the event segment M to 5
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Figure i. The detail process of obtaining the key KT , query QT ,
and value VT near the target timestamp T in local implicit video
transformer (LIVT).

Table i. Ablation studies on the event-modulated alignment
(EMA). Metrics: PSNR (dB) / SSIM.

Alignment In-Dist. OOD
1× scale 33.21 / 0.9266 29.46 / 0.8560

1/2× scale 32.98 / 0.9231 29.32 / 0.8520
1/4× scale 32.92 / 0.9223 29.26 / 0.8502
multi-scale 33.30 / 0.9279 29.54 / 0.8579

and the channel number of the convolutional layers in LIVT
to 16.

The cosine positional encoding in LIVT is an extension
of [1], formulated by

g(δC) = [ sin(20δC), cos(20δC), ...,

sin(2L−1δC), cos(2L−1δC)],
(i)

where δC = {(δτ, δx, δy)} is the spatiotemporal relative
coordinates and L is a hyper-parameter set to 10.

C. More Ablation Studies
Effect of the Multi-Scale Alignment in EMA. Table i
shows that 1× scale alignment plays a more critical role.
However, the multi-scale manner (1×, 1

2×, 1
4×) captures

richer motion cues compared to the single-scale setting,
leading to improved performance.
Effect of the Bidirectional Recurrence in BRC. Table ii
presents the ablations of BRC, which involves bidirectional
(forward and backward) recurrence in BRC. We also in-
vestigate the influence of channel attention mechanisms in
BRC. As we can see, the model using only the forward
or backward compensation shows the worst performance.
When we incorporate attention in each direction, the perfor-
mance increases. Moreover, by implementing bidirectional



Table ii. Ablation studies on the bidirectional recurrent compen-
sation (BRC). Metrics: PSNR (dB) / SSIM.

Recurrent Channel Attention In-Dist. OOD
fwd. 32.57 / 0.9176 28.96 / 0.8429
bwd. 32.55 / 0.9171 28.94 / 0.8424
fwd. ✓ 32.79 / 0.9211 29.12 / 0.8467
bwd. ✓ 32.79 / 0.9207 29.11 / 0.8467

fwd. & bwd. ✓ 33.30 / 0.9279 29.54 / 0.8579

Table iii. Ablation studies on the attention mechanism and posi-
tional encoding in local implicit video transformer (LIVT). Met-
rics: PSNR (dB) / SSIM.

Attention
Mechanism

Positional
Encoding

In-Dist. OOD

Neighborhood [4] Cosine 33.07 / 0.9248 29.24 / 0.8492
Cross-scale Learnable [8] 31.92 / 0.9086 28.37 / 0.8294
Cross-scale Cosine 33.30 / 0.9279 29.54 / 0.8579

compensation with attention both forward and backward,
the model performs the best, which achieves significant im-
provements.
Impact of the Cross-Scale Attention & Cosine Positional
Encoding in LIVT. In LIVT, the query is obtained from
the large-scale features at the HR grid after trilinear up-
sampling, while the key and value are obtained from the
small-scale at the local LR grids nearest to the query. There-
fore, we call it “cross-scale”, which can capture spatiotem-
poral dependencies across LR and HR scales. Our cross-
scale attention can be seen as a 3D cross-scale derivation
of neighborhood attention [4]. As illustrated in Table iii,
it exhibits suboptimal performance if we use this neighbor-
hood attention directly. Besides, we encode and reshape the
spatiotemporal relative coordinates (δτ, δx, δy) ∈ (−1, 1)
from each query point to all pixel points within its local
grid via the cosine positional encoding (Eq. i). Here, we
investigate its impact by comparing it with another learn-
able positional encoding scheme [8]. Table iii shows that
the model with cosine positional encoding is superior to the
learnable one.
Hyper-parameter Setting. Here, we investigate the impact
of event segments M in EASM, local grid size in LIVT, and
the channel of learning video INR. As shown in Table iv, se-
lecting an insufficient number of event segments, INR chan-
nels, or local grid size can lead to a degradation in recon-
struction quality. Conversely, an over-large number of each
can significantly decrease the model efficiency. Consider-
ing the balance between the performance and complexity,
we implement the EvEnhancer-light and EvEnhancer using
the settings in the last two rows as our baseline models to
compare with other methods in this work.

D. Temporal Consistency
In Figure ii, we visualize the temporal profiles of
VideoINR [3], MoTIF [2], and our EvEnhancer on the
GoPro dataset [9]. We can observe that, the results of

Table iv. Ablation studies on hyperparameters including the num-
ber of event segments M , the number of INR channels, and local
grid size of TG ×HG ×WG. Metrics: PSNR (dB) / TFLOPs.

M Local Grid INR Channel In-dist. OOD Params (M)
5 3×3×3 64 32.32 / 6.742 28.73 / 8.512 6.548
9 3×3×3 64 33.08 / 7.516 29.46 / 8.852 6.548
7 1×3×3 64 33.15 / 4.609 27.00 / 5.077 6.253
7 5×3×3 64 33.35 / 9.649 29.60 / 12.29 6.843
7 3×1×1 64 32.99 / 3.769 29.29 / 3.875 6.155
7 3×5×5 64 33.28 / 13.85 29.52 / 18.30 7.335
7 3×3×3 16 33.01 / 4.003 29.12 / 4.416 5.810
5 3×3×3 16 32.73 / 3.663 28.94 / 4.266 5.810
7 3×3×3 64 33.30 / 7.129 29.54 / 8.682 6.548
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Figure ii. Comparison of temporal profile on the GoPro dataset [9]
(t = 12, s = 6). We select a column (orange dotted lines) and
observe the changes across time.
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Figure iii. Comparison of temporal profile on the BS-ERGB
dataset [13] (t = 4, s = 4). We select a row (orange dotted lines)
and observe the changes across time.

VideoINR and MoTIF contain obvious noise, blurs, and
heavy flickering artifacts, which indicates their poor tem-
poral consistencies. In contrast, the profiles of EvEnhancer-
light can guarantee better consistency but still contain dis-
continuity and artifacts. Our full model EvEnhancer shows
more pleasant and smoother temporal profiles. Also, we vi-
sualize the temporal profiles on the real-world BS-ERGB
dataset [13] in Figure iii, including event-based VFI + VSR
methods (CBMNet-L [7] + EvTexture [6]). Our EvEn-
hancer maintains the best consistency.
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Figure iv. Qualitative comparison for OOD scale (t = 6, s = 4) on the BS-ERGB dataset [13]. We compare the normalized absolute
difference maps (yellow boxes) for the same regions in each frame as in the GT frames.

E. More Visualization Results
Limited by the space of the main manuscript, in the sup-
plementary material, we provide more qualitative results on
both synthetic Adobe240 [10] and GoPro [9] datasets and
real-world BS-ERGB dataset [13]. In Figure iv, we conduct
comparisons on the real-world BS-ERGB dataset, where
the spatiotemporal scales are OOD. We also calculate the
difference maps between the reconstructed frames and the
ground-truth (GT) to reveal the capacity for detail recovery.
As we can see, our method can produce more preferable HR

frames at any time. In Figure v, vi, and vii, there are more
results for In-dist. and OOD scales on the BS-ERGB [13],
Adobe240 [10], and GoPro [9] datasets, where the results
demonstrate the superior effectiveness of our models. In
Figure viii, we fix the temporal scale between two input LR
frames as 6 and perform arbitrary spatial VSR. As seen in
the reconstruction performance of the center frame at times-
tamp T = 0.5, both our EvEnhancer-light and EvEnhancer
can recover more textures.
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Figure v. Qualitative comparison for In-Dist. scale (t = 8, s = 4) on the BS-ERGB dataset [13]. Best zoom in for better visualization.



T
=

0
T

=
0.
1
25

T
=

0.
25

T
=

0.
3
75

T
=

0.
5

T
=

0.
62
5

T
=

0.
7
5

T
=

0.
87
5

T
=

1

VideoINR [3] MoTIF [2] EvEnhancer (Ours) EvEnhancer-light (Ours)

Figure vi. Qualitative comparison for In-Dist. scale (t = 8, s = 4) on the Adobe240 dataset [10]. Best zoom in for better visualization.



T
=

0
T

=
0
.0
8
3

T
=

0
.1
6
7

T
=

0
.2
5
0

T
=

0
.3
3
3

T
=

0
.4
1
7

T
=

0
.5
0
0

T
=

0
.5
8
3

T
=

0
.6
6
7

T
=

0
.7
5
0

T
=

0
.8
3
3

T
=

0
.9
1
7

T
=

1

VideoINR [3] MoTIF [2] EvEnhancer (Ours) EvEnhancer-light (Ours)

Figure vii. Qualitative comparison for OOD scale (t = 12, s = 6) on the GoPro dataset [9]. Best zoom in for better visualization.
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Figure viii. Qualitative comparison for different spatial scale (s = 2, 4, 6), and fixed temporal scale t = 6 on the GoPro dataset [9]. We
display the center frame at T = 0.5. Best zoom in for better visualization.
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