
From Words to Structured Visuals: A Benchmark and Framework for
Text-to-Diagram Generation and Editing

Supplementary Material

A. DiagramGenBenchmark Details
A.1. Dataset Curation
In constructing DiagramGenBenchmark, we employed a
rigorous data curation process to ensure quality and diver-
sity across the dataset. This section details our multi-step
pipeline, from raw data collection to task-specific dataset
creation, as illustrated in Figure 5.

Data Sources We gathered raw Tex and DOT language-
based code data from multiple sources, including the
VGQA [54], datikz [6], and datikz-v2 [6] datasets on Hug-
ging Face, as well as publicly available repositories on
GitHub and Overleaf. These sources yielded a comprehen-
sive collection of over 13,000 raw code samples, originally
sourced from various research papers on arXiv.

Data Processing Collected raw code samples were sub-
jected to manual filtering. Out of 13,000 initial samples,
we retained only those that could be compiled successfully
into images, ensuring code-to-diagram consistency. We ex-
ecuted each code sample using respective Tex and DOT
compilers and stored each code-image pair in separate di-
rectories. After this filtering, we obtained 6,983 code-image
pairs as the final dataset.

Data Annotation To label the data, we defined eight di-
agram categories: model architecture diagram, flowchart,
line chart, directed graph, undirected graph, table, bar chart,
and mind map. Automatic labeling was conducted using the
GPT-4o [3].

A.2. Dataset Task
Dataset Tasks: We constructed three distinct tasks to en-
hance the benchmark’s applicability:
• Diagram generation: This task involves generating code

from human instructions. We created human-like instruc-
tions by reverse-engineering existing open-source dia-
gram code using the closed-source GPT-4o model. A total
of 6,713 training instances and 270 testing instances were
generated for this task.

• Diagram coding: This task requires generating compli-
able diagram code from an image. Using the code and
image pairs from the diagram generation task, we retained
only image-code pairs and created a set of 6,713 training
instances and 270 testing instances.

• Diagram editing: This task simulates code editing based
on revision instructions. We generated modification sug-
gestions using GPT-4o and applied them to the original
code with the CodeGeeX-4 [52] model. Only compil-
able, unique modified codes were selected, resulting in
1,400 training instances and 200 testing instances.

A.3. Dataset Distribution
Figure 6 illustrates the data distribution for different dia-
gram types in the diagram generation / diagram coding task
and the diagram editing task.

B. Detailed Prompts for DiagramAgent
This appendix provides a comprehensive view of the
prompt designs used in DiagramAgent’s core compo-
nents, including the Plan Agent, Complete Query handling,
Diagram-to-Code Agent, Code Agent, and Check Agent.
These prompts support different tasks such as drawing,
modifying diagrams, and error checking, ensuring that each
module contributes to accurate and coherent diagram gen-
eration and modification.

C. Comparison with Existing Benchmarks
As shown in Table 8, DiagramGenBenchmark differs from
existing benchmarks by providing both natural language
and image inputs specifically for structured diagram genera-
tion and editing. Unlike traditional code generation bench-
marks focused on simple text-based tasks, our benchmark
encompasses a diverse range of diagram types and incor-
porates multi-level evaluation metrics (e.g., Pass@1, Code-
BLEU, CLIP-FID, PSNR). Additionally, DiagramGen-
Benchmark includes three specialized tasks—diagram gen-
eration, diagram coding, and diagram editing—designed
to evaluate both diagram creation and editing capabilities,
making it a comprehensive resource for advancing multi-
modal diagram generation research.

D. Human Evaluation Details
To evaluate the performance of DiagramAgent, three evalu-
ators with master’s degrees independently rated the quality
of generated diagrams on a scale from 1 to 5. The evaluation
focused on the similarity between the generated diagrams
and reference diagrams for two core tasks: the diagram gen-
eration and the diagram editing. Each score represents the
following specific criteria:

VGQA

datikz

datikz-v2

Data Source

Model Architecture Diagram

Flowchart Directed Graph

Line Chart

Table

Bar Chart

Mind Map

Undirected Graph

Data Processing

LLM Labeling

Data Building
Diagram editingDiagram generation

Stage 1

Stage 2

LLM

Diagram coding
Raw Data

Filtration

Compiling

Stage 1

Stage 2

Coder LLM

Complete Query

Original Code

Modified Query

LLM

Modified Code
Original Code

Complete Query

Original Images

Our Data

Query

LLM

Original Code

LLM

Images

Figure 5. DiagramGenBenchmark Data Curation Process

(A) Diagram generation / editing (B) Diagram coding

Figure 6. Data Distribution of DiagramGenBenchmark.

• 1: The generated diagram shows very low similarity to the
reference diagram, containing significant logical or struc-
tural errors and failing to fulfill the intended instructions.

• 2: The generated diagram partially reflects the intended
design but exhibits several issues, including low accuracy
and visual coherence, and falls below the expected quality
standards.

• 3: The generated diagram meets basic requirements for
structure and intent, though it has noticeable inconsisten-
cies or errors that reduce its overall quality.

• 4: The generated diagram is mostly accurate and visu-
ally coherent, with only minor, negligible errors; it aligns
closely with the intended reference.

• 5: The generated diagram is completely accurate and
highly similar to the reference diagram, with no dis-
cernible errors; it fully meets or exceeds expectations for
clarity and precision.
Each evaluator independently scored each of the N test

items, resulting in three scores per item. To calculate the
mean score for each item, we average the three scores from

Table 8. Comparison of DiagramGenBenchmark with Existing Benchmarks. ”NL” indicates Natural Language inputs, ”I” represents
Image inputs, and ”Code” denotes code output. Evaluation metrics vary across benchmarks, including pass rate, multi-level metrics, and
other task-specific measures.

Benchmark Source # of Chart Types # of Test Instances Input Format Output Format Evaluation Metric

HumanEval [9] Human Curated - 164 Code Code Pass Rate
MBPP [5] Human Curated - 500 NL+Code Code Pass Rate
MMCode [20] Crawl - 263 NL+Code Code Pass Rate
MatPlotBench [46] Human Curated 13 100 NL Code GPT-4V Score
Design2Code [34] Crawl - 484 I+NL Code Multi-Level
Plot2Code [42] Human Curated 6 132 I Code Pass Rate, Text-Match, etc.

Diagram generation (Ours) Human Curated 8 270 NL Code,Diagram Pass Rate, CodeBLEU, ROUGE-L, etc.
Diagram coding (Ours) Human Curated 8 270 I Code Pass Rate, CodeBLEU, ROUGE-L, etc.
Diagram eidting (Ours) Human Curated 8 200 NL+Code Code,Diagram Pass Rate, CodeBLEU, ROUGE-L, etc.

< System >
As a task distributor, analyze user instructions and expand them as needed. For "Drawing"
pass the expanded instructions to the code agent. For "Modifying" directly forward the
instructions to the diagram-to-code agent without expansion.

< User >

Plan Agent

As a task distributor, your role is to analyze user instructions and expand them before
passing the expanded instructions to the code agent. Users can choose between "Drawing"
or "Modifying":

1. **Drawing**:
- Carefully analyze the user's request and perform any necessary expansions to

ensure all details are covered.
- Pass the expanded instructions to the code agent.

2. **Modifying**:
- Directly forward the user's instructions to the diagram-to-code agent without any

expansion.

Make sure to account for all possible details and variations in the expansion of drawing
instructions to generate accurate outputs.

Figure 7. Prompt for Plan Agent: Analyzing and expanding user
instructions based on the type of task (Generation or Editing) to
ensure clarity before passing to the code generation stage.

the evaluators:

Mean Score for Item i =
S(i)
1 + S(i)

2 + S(i)
3

3
(10)

where S(i)
1 , S(i)

2 , and S(i)
3 represent the scores given by

the three evaluators for item i.
After obtaining the mean score for each item, we calcu-

late the overall average score for the model across all N test
items. This final score is computed as:

Final Score for Model =
PN

i=1 Mean Score for Item i

N
(11)

This final score provides a standardized measure of the
model’s ability to generate diagrams that closely resemble
the reference diagrams. It reflects the model’s performance
across each task.

Expand Complete Queries
< System >
You are an expert in expanding the original question based on the code results. Your task is to extend the original
question. Before the extension, you are not aware of the code results. Assume the code is the final desired
outcome, but the original question does not sufficiently describe your needs. You need to elaborate on the
original question, but the extended content cannot include code snippets. Please make the extension as detailed
as possible.

< User >
Please refer to the output format of the example below and extend the question based on the provided TikZ or
DOT code and the original question. Do not include any code content. The extended question should relate to
the code and maintain the same tone as the original question. The output format is as follows:
1. Do not explain the code.
2. The output should not contain any code.
3. The output should be concise and in a human-like tone.
4. Please ensure that the extended output is consistent with the code results.

Example:
Original question:

How can I use LaTeX and TikZ to draw a neural network architecture diagram that includes an input layer,
multiple hidden layers, and an output layer? I would like each layer to have a different number of neurons and
to label each layer with its name.

Code:
\documentclass[tikz]{standalone}
\usepackage{neuralnetwork}
.
\hiddenlayer[count=5, bias=false]
\linklayers
\outputlayer[count=8, title=Output Layer, text=\xout]
\linklayers

\end{neuralnetwork}
\end{document}

Output:
How can I use LaTeX and TikZ to draw a neural network architecture diagram that includes an input layer,

multiple hidden layers, and an output layer? I want each layer to have a different number of neurons and to be
labeled appropriately.

The original question is as follows:
{ Query }
The code is as follows:
{ Code }

Figure 8. Prompt for Expanding Drawing Query to Generate Com-
plete Query.

E. Diagram Coding Complete Results

This appendix provides a complete analysis of the experi-
mental results for the diagram coding task with DiagramA-
gent, expanding on the brief introduction provided in Sec-
tion Sec. 6.2 of the main text. Due to space constraints,
only key findings were highlighted in the main text, while
this appendix presents a more in-depth evaluation of Dia-
gramAgent’s performance relative to other models across
various metrics, as shown in Tables 9 and 10.

Table 9. Main results for diagram coding task (Diagram-to-Code Agent). The best result in each metric is bolded.

Model Size Pass@1↑ ROUGE-L↑ codeBLEU↑ Edit Dist.↓ chrF↑ RUBY↑

Yi-VL [47] 34B 2.22 20.01 70.57 95.43 11.68 12.53
Qwen2-VL [39] 8B 28.89 31.74 80.04 88.13 28.39 21.21
Internlm-xcomposer2.5 [50] 7B 3.33 28.47 77.35 92.35 18.74 17.97
Llama-3.2-Vision [11] 11B 27.78 21.94 75.37 92.92 16.37 13.95
Phi-3.5-vision [2] 4B 24.07 27.53 76.56 90.01 20.86 17.96
Llava-v1.6 [19] 34B 8.89 26.68 76.53 93.46 21.00 16.30
Cogvlm2-llama3 [16] 19B 3.70 14.42 70.72 97.07 8.27 8.91
Deepseek-vl [24] 7B 50.74 25.18 76.48 88.82 18.35 16.13

GPT-4o [3] - 64.07 39.95 81.78 86.68 34.40 26.18
GLM-4-plus [13] - 51.48 35.92 80.16 86.12 29.10 24.60
Gemini-1.5-pro [31] - 17.78 38.66 80.75 88.05 30.00 25.62

DiagramAgent 7B 68.89 48.99 84.64 72.74 46.98 37.46

Table 10. Ablation study for diagram coding task (Diagram-to-Code Agent). Each result shows the performance of DiagramAgent under
various component configurations, with the decrease in each metric from the full model indicated in parentheses.

Diagram Coding Size Pass@1↑ ROUGE-L↑ codeBLEU↑ Edit Dist.↓ chrF↑ RUBY↑

DiagramAgent 7B 68.89 48.99 84.64 72.74 46.98 37.46

– w/o GPT-4o 7B 62.59 48.71 84.57 72.69 46.49 37.22
(-6.30) (-0.28) (-0.07) (-0.05) (-0.49) (-0.24)

– w/o Compiler 7B 53.33 48.46 84.52 73.51 46.91 36.66
(-15.56) (-0.53) (-0.12) (+0.77) (-0.07) (-0.80)

– w/o GPT-4o & Compiler 7B 52.59 47.81 84.21 74.56 45.28 35.81
(-16.30) (-1.18) (-0.43) (+1.82) (-1.70) (-1.65)

< User >
Please output the code directly according to the following instructions.

Diagram to Code Agent

< a. GPT-4o Feedback >

< b. Compiler Feedback >

(<image> Please convert this image to LaTeX code./<image> Please convert this image to DOT code.)

You are a code design expert. I will provide LaTeX or DOT code that may contain errors, along with an
image, a problem description, and code modification suggestions.

Your task is:
- Correct the code based on the image, the provided problem, and the modification suggestions.
- Output the corrected code directly, without any explanation or commentary.

Question: { Question }
Code modification suggestions: { GPT-4o Feedback }
May contain incorrect LaTeX or DOT code: { Model Response }
Answer:

You are a code design expert. I will provide LaTeX or DOT code that may contain errors, along with an
image, a problem description, and error messages.

Your task is:
- Correct the code based on the image, the provided problem, and the error messages.
- Output the corrected code directly, without any explanation or commentary.

Question: { Question }
Error messages: { Error Content }
May contain incorrect LaTeX or DOT code: { Compiler Feedback }

Figure 9. Prompt for Diagram-to-Code Agent: Handling direct
conversion of diagrams to LaTeX or DOT code based on user-
provided images and instructions.

Main Results Table 9 summarizes the main results for
the diagram coding task, where DiagramAgent consistently
outperforms other models across all key evaluation metrics,
demonstrating its robustness and precision in translating di-

< User >
You are an expert in code validation. Below is LaTeX or DOT code, an image, and a question.

Your task is:
- Check for Errors: Identify any syntax errors, discrepancies, or mismatches between the

code and the image.
- Provide Suggestions: If errors exist, explain the issues and suggest specific changes

without directly providing the modified code.
- Validation: If no errors are found, respond with 'The code is correct' instead of just 'True'.
- Ensure your feedback is clear, thorough, and actionable, but do not include the corrected

code itself.

Code: { Model Response }
Answer:

Check Agent

Figure 10. Check Agent Prompt for Diagram Coding: Verifying
code accuracy for Diagram-to-Code Agent outputs, ensuring logi-
cal consistency and correctness.

agrams into code. For Pass@1, DiagramAgent achieves
68.89, which is significantly higher than the scores of open-
source models, such as Qwen2-VL (28.89) and Llama-3.2-
Vision (27.78), as well as the scores of closed-source mod-
els such as GPT-4o (64.07) and GLM-4-plus (51.48). This
high Pass@1 indicates that DiagramAgent performs well in
generating correct code on the first attempt, reducing the
need for iterative refinements and thus enhancing efficiency
in the coding process.

The ROUGE-L score of 48.99 for DiagramAgent high-
lights its strength in preserving the structural and sequen-

< System >
You are an expert in TiKZ and DOT.

< User >
Please output the complete code.

Code Agent

{ Complete Query }

< a. GPT-4o Feedback >

You are a code design expert. I will provide LaTeX or DOT code that may contain errors,
along with a problem description, and code modification suggestions.

Your task is:
- Correct the code based the provided problem, and the modification suggestions.
- Output the corrected code directly, without any explanation or commentary.

Question:
{ Question }

Code modification suggestions:
{ Suggestion }

May contain incorrect LaTeX or DOT code:
{ Code }

Answer:

< b. Compiler Feedback >

The code is as follows:
{ Code }

Error :
{ Error Content }

Figure 11. Code Agent Prompt for Diagram Generation: Generat-
ing code based on detailed instructions provided by the user.

tial accuracy of generated code, outperforming models such
as GLM-4-plus (35.92) and GPT-4o (39.95). ROUGE-L
is crucial in tasks that require alignment with the target’s
structural elements, and DiagramAgent’s high score reflects
its ability to capture complex syntactic patterns essential for
correct code generation from diagrams. Additionally, Dia-
gramAgent attains a codeBLEU score of 84.64, the highest
among all models, which captures both syntactic and se-
mantic alignment with the target code. Compared to other
models, such as Qwen2-VL (80.04) and Gemini-1.5-pro
(80.75), DiagramAgent demonstrates a marked improve-
ment in generating both structurally and functionally accu-
rate code, underscoring its capability to handle the nuanced
requirements of diagram coding tasks. In terms of Edit Dis-
tance, DiagramAgent achieves a score of 72.74, which is
the lowest among all models, indicating that fewer modifi-
cations are needed to align generated code with the target.
Lower Edit Distance highlights DiagramAgent’s initial out-
put accuracy, minimizing post-generation adjustments and
improving overall workflow efficiency. This metric con-
trasts with higher Edit Distances observed in other models,
such as Cogvlm2-llama3 (97.07) and Yi-VL (95.43), which
indicate a greater need for corrections. Additionally, Dia-
gramAgent’s chrF score of 46.98, higher than all compared
models, reflects the fine-grained character-level alignment
achieved by DiagramAgent, essential for high-quality code
generation. Finally, DiagramAgent’s RUBY score of 37.46

< System >
You are an expert at modifying code.

< User >
Your task is to return the fully modified code according to the user's instructions.

Code Agent

{ Question }
The code is as follows:
{ Code }

Output the code directly.

< a. GPT-4o Feedback >

You are a code design expert. I will provide LaTeX or DOT code that may contain errors,
along with a problem description, and code modification suggestions.

Your task is:
- Correct the code based the provided problem, and the modification suggestions.
- Output the corrected code directly, without any explanation or commentary.

Question:
{ Question }

Code modification suggestions:
{ Suggestion }

May contain incorrect LaTeX or DOT code:
{ Code }

Answer:

< b. Compiler Feedback >

The code is as follows:
{ Code }

Error :
{ Error Content }

Figure 12. Code Agent Prompt for Diagram Editing: Handling
feedback-based adjustments to existing code by applying sugges-
tions from either GPT-4o or compiler feedback.

< System >
You are an expert in TiKZ and DOT.

< User >
You are an expert in code validation. Below is LaTeX or DOT code and a question.

Your task is:
- Check for Errors: Identify any syntax errors, discrepancies, or mismatches between the

code and the question.
- Provide Suggestions: If errors exist, explain the issues and suggest specific changes

without directly providing the modified code.
- Validation: If no errors are found, respond with 'The code is correct' instead of just 'True'.
- Ensure your feedback is clear, thorough, and actionable, but do not include the corrected

code itself.

Question:
{ Question }

Code:
{ Code }

Check Agent

Figure 13. Check Agent: Using GPT-4o to perform error detection
and provide correction suggestions within Code Agent outputs.

is the highest across models, underscoring the model’s ro-
bustness and its capacity to generate code that aligns well
with human coding standards, surpassing both close-source
models, such as GPT-4o (26.18) and open-source options
like Qwen2-VL (21.21). These comprehensive results col-

lectively affirm DiagramAgent’s superior performance in
the diagram coding task across all evaluation metrics.

Ablation Study Table 10 presents the ablation study re-
sults, which evaluate the contributions of the GPT-4o verifi-
cation and compiler debugging modules to DiagramAgent’s
overall performance. When the GPT-4o verification module
is removed, DiagramAgent’s Pass@1 score drops by 6.30,
while ROUGE-L decreases slightly by 0.28. These reduc-
tions suggest that the verification module enhances first-
attempt accuracy, as indicated by the drop in Pass@1, and
plays a role in preserving the structural fidelity of generated
code, reflected in the ROUGE-L score. The minor reduc-
tion in codeBLEU by 0.07 further points to the verification
component’s contribution to maintaining both syntactic and
semantic consistency, while the minimal changes in Edit
Distance (+0.05) and chrF (-0.49) indicate that this mod-
ule has a moderate impact on fine-grained accuracy and er-
ror reduction. Removing the compiler debugging module
has a more substantial effect, leading to a 15.56 decrease
in Pass@1 and a 0.53 drop in ROUGE-L. These changes
reflect the compiler’s crucial role in achieving syntactic ac-
curacy, as it likely identifies and corrects structural incon-
sistencies early in the generation process. The Edit Dis-
tance increase of +0.77 suggests that the absence of de-
bugging requires more extensive post-generation edits to
achieve target alignment. The drops in chrF (-0.07) and
RUBY (-0.80) underscore the compiler’s importance in en-
suring character-level precision and maintaining the overall
quality of the generated code. When both the GPT-4o veri-
fication and compiler debugging components are removed,
DiagramAgent’s performance declines across all metrics,
with a Pass@1 decrease of 16.30 and an Edit Distance in-
crease of +1.82. The additional decreases in ROUGE-L (-
1.18), codeBLEU (-0.43), chrF (-1.70), and RUBY (-1.65)
further underscore the importance of these components for
achieving DiagramAgent’s high standards in code genera-
tion. Without these modules, the model’s outputs show a
higher propensity for errors, requiring greater manual ad-
justment and impacting both structural and semantic accu-
racy. This configuration demonstrates the complementary
roles of verification and debugging in maintaining Diagra-
mAgent’s precision and robustness in diagram coding tasks.

F. Error Analysis

Our analysis of errors covers three primary tasks: diagram
generation, diagram editing, and diagram coding, with com-
mon error types illustrated in Figures 14, 15, and 16. Iden-
tifying and addressing these errors is crucial for enhancing
the overall accuracy of generated diagrams, and it repre-
sents an essential focus for future work.

F.1. Diagram Generation Errors
For the diagram generation, three prominent error types
emerge:
• Diagram Shape Understanding Error: This error oc-

curs when the model misinterprets the shape requirements
specified in the user query. For instance, the model may
generate incorrect or overly simplified shapes, as seen in
Figure 14 (left). This typically arises from ambiguity in
the instruction or ineffective shape recognition capabili-
ties.

• Diagram Structure Understanding Error: The model
occasionally fails to capture the hierarchical or relational
structure of diagrams, leading to incorrect element place-
ments or connections, as shown in Figure 14 (center).
This error is often due to limited structural parsing of
complex diagram elements.

• Diagram Content Understanding Error: Errors in con-
tent understanding arise when the model misinterprets
content-specific details, such as labels or numeric data,
leading to inaccuracies in representation, as illustrated in
Figure 14 (right). This may result from insufficient pars-
ing of content semantics in instructions.

F.2. Diagram Coding Errors
For the diagram coding, errors typically involve spatial and
layout issues:
• Position Understanding Error: Misinterpretations of

element positions result in misplaced components, as
shown in Figure 15 (left). This error often stems from
insufficient spatial understanding of diagram elements.

• Layout Understanding Error: Incorrect layout arrange-
ments, where elements are poorly aligned or spaced, dis-
rupt diagram coherence, as illustrated in Figure 15 (cen-
ter). This error arises from limitations in layout parsing
and spatial arrangement.

• Color Understanding Error: Similar to the diagram
editing, color errors also appear in diagram coding, lead-
ing to misinterpreted color schemes that impact semantic
meaning, as seen in Figure 15 (right). This is due to inad-
equate interpretation of color attributes in diagrams.

F.3. Diagram Editing Errors
In the diagram editing, the following errors are most preva-
lent:
• Color Understanding Error: Color misinterpretation

often leads to incorrect assignments, reducing visual clar-
ity, as shown in Figure 16 (left). This issue typically
arises from inadequate parsing of color-related instruc-
tions.

• Line Type Understanding Error: Misunderstandings in
line type specifications, such as solid vs. dashed lines,
lead to errors in edge representation, as seen in Figure

Diagram shape understanding error Diagram structure understanding error Diagram content understanding error

Response

User Query

Ground Truth

Error Case

User Query

Error Case

Response

Ground Truth

How can I use LaTeX and TikZ to create a
diagram that illustrates a data
transformation process, where one grid
represents input data with labeled
variables and question marks, and
another grid represents forecasts with
predicted variables, connected by an
arrow indicating the model's role?

How can I use LaTeX and TikZ to
create a mind map diagram that
illustrates the various branches of
Computer Science, including
practical, applied, technical, and
theoretical areas, with each
branch further divided into
specific subfields?

Diagram Generation

User Query

Error Case

Response

Ground Truth

How can I use LaTeX and TikZ to create
a time series graph that illustrates meat
consumption over time, including a line
for actual consumption, a dashed line
for recommended consumption, and a
shaded area to indicate excess
consumption? Additionally, I want to
add a legend to label each element.

Figure 14. Common Error Types in the Diagram Generation: (Left) Shape Understanding Error, (Center) Structure Understanding Error,
(Right) Content Understanding Error

Position understanding error Layout understanding error Color understanding error

Response

User Query

Ground Truth

\\documentclass[a4paper]{article}
\\usepackage[applemac]{inputenc}
\\usepackage{amsmath,amsthm,amssymb,bussproofs,tikz,stmaryrd,mathtools}

\\begin{document}

\\begin{tikzpicture}[scale=0.9]
\\node (G111) at (0,0,0) {$1_{1,1}$};
\\node (G211) at (2,0,0) {$2_{1,1}$};
\\node (G121) at (0,2,0) {$1_{2,1}$};
\\node (G221) at (2,2,0) {$2_{2,1}$};
\\node[opacity=0.6] (G112) at (0,0,-4) {$1_{1,2}$};
\\node[opacity=0.6] (G212) at (2,0,-4) {$2_{1,2}$};

.
\\end{document}

\\documentclass[a4paper]{article}
\\usepackage[applemac]{inputenc}
.

\\begin{document}

\\begin{tikzpicture}[scale=0.9]
\\node (G111) at (1,1,1) {$2_{1,1}$};
\\node (G111) at (2,2,2) {$2_{1,1}$};
\\node (G111) at (3,2,3) {$2_{2,1}$};
\\node (G111) at (3,2,3) {$2_{2,1}$};

.
\\end{document}

digraph "Queues" {
.
label=<
.

<TR><TD PORT="Description" COLSPAN=“4"
ALIGN="CENTER">Description</TD></TR>

<TR><TD PORT="CorrespondAddress" COLSPAN=“6"
ALIGN="CENTER">CorrespondAddress</TD></TR>

<TR><TD PORT="CommentAddress" COLSPAN=“6"
ALIGN="CENTER">CommentAddress</TD></TR>
.
}

Error Case
User Query

Error Case

Response

// dot 2.28.0 on Linux 3.2.21-1.32.6.amzn1.x86_64
digraph "Queues" {
.
label=<
.

<TR><TD PORT="Description" COLSPAN="3"
ALIGN="LEFT">Description</TD></TR>

<TR><TD PORT="CorrespondAddress" COLSPAN="3"
ALIGN="LEFT">CorrespondAddress</TD></TR>

<TR><TD PORT="CommentAddress" COLSPAN="3"
ALIGN="LEFT">CommentAddress</TD></TR>

<TR><TD PORT="InitialPriority" COLSPAN="3"
ALIGN="LEFT">InitialPriority</TD></TR>
.
}

Ground Truth

Diagram Coding

\\documentclass[tikz,border=3.14mm]{standalone}
\\usetikzlibrary{positioning,shapes.geometric,shapes.misc}
.

\\node[cifi=green,right=4mm of T1,yshift=1mm] (T4)
{T_4};
.

\\node[cifi=blue!60,left=6mm of T3] (T2) {T_2};
\\node[cifi=blue!60,below right=6mm and 2mm of T2] (T6)

{T_6};
\\node[cifi=blue!60,right=6mm of C] (T3') {T_5};
\\node[cifi=blue!60,right=6mm of T3'] (T3') {T_3};

.
\\end{document}

User Query

Error Case

Response

\\documentclass[tikz,border=3.14mm]{standalone}
\\usetikzlibrary{positioning,shapes.geometric,shapes.misc}
.
\\node[cifi=green,right=4mm of T1,yshift=1mm] (T4) {T_4};

\\node[cifi=green,below right=3mm of T4] (T5) {T_5};
\\node[cifi=green,below left=3mm and 2mm of T5] (T7) {T_7};
\\node[cifi=orange!60,below left=4mm and 6mm of T4] (T3) {T_3};
\\node[cifi=orange!60,left=3mm of T3] (T2) {T_2};
\\node[cifi=orange!60,below right=3mm and 2mm of T2] (T6) {T_6};
\\node[cifi=orange!60,right=3mm of C] (T5') {T_5};
\\node[cifi=orange!60,right=3mm of T5'] (T3') {T_3};

\\end{scope}
\\begin{scope}[thick,>=latex,font=\\small]
.
\\end{document}

Ground Truth

Figure 15. Common Error Types in the Diagram Coding: (Left) Position Understanding Error, (Center) Layout Understanding Error,
(Right) Color Understanding Error

Response

User Query

Ground Truth

Error Case
User Query

Error Case

Response

Ground Truth

For a more distinct visual representation,
consider altering the orange surfaces to a
brighter shade and increasing the opacity.
This adjustment enhances the visibility of
these elements within the graph.

For the graph described, consider
adjusting the style of the
connections between nodes to be
dotted lines instead of solid lines.
This change will provide a distinct
visual characteristic to the graph's
edges, offering a clear
differentiation in style.

Original Code
.
\begin{document}
\begin{tikzpicture}
\begin{axis}[

.
xtick distance=1,
ytick distance=1,

.
\end{tikzpicture}
\end{document}

Original Code

graph {
JiaLe[style=filled]
Roee[style=filled]
Molly[style=filled]
.

}

Diagram Editing

User Query

Error Case

Response

Ground Truth

Adjust the font style of the node labels
'1' through '7' and '4', '2', '1', '5', '6', '7'
to boldface.

Original Code
\documentclass[12pt]{amsart}
\usepackage{amsmath,amsthm,amssymb}
.
\draw[arrows={->[scale=1.5]}] (a) -- (b);
\draw[arrows={->[scale=1.5]}] (a) -- (e);
.
\draw[arrows={->[scale=1.5]}] (n) -- (o);
\draw[arrows={->[scale=1.5]}] (o) -- (p);
\draw[arrows={->[scale=1.5]}] (p) -- (n);
.
\end{tikzpicture}
\end{document}

Color understanding error Line type understanding error Font type understanding error

Figure 16. Common Error Types in the Diagram Editing: (Left) Color Understanding Error, (Center) Line Type Understanding Error,
(Right) Font Type Understanding Error

16 (center). This stems from insufficient differentiation
between line types in code interpretation.

• Font Type Understanding Error: Incorrect font usage
in diagrams, especially for labels, affects readability and
visual coherence, as illustrated in Figure 16 (right). This
issue is often due to limitations in font parsing and appli-
cation.

Addressing these errors is essential for enhancing the
precision and fidelity of the generated diagrams. Future
work should focus on refining the model’s capabilities in
shape, structure, content, color, line type, font, position,
and layout understanding to better align generated diagrams
with user expectations.

G. Qualitative Analysis

We provide qualitative examples to illustrate the perfor-
mance of DIAGRAMAGENT on both Diagram Generation

and Diagram Editing tasks.

How can I use LaTeX and TikZ to create a detailed diagram that
includes a grid, labeled axes, gray rectangles, and arrows
connecting different elements? I want to include annotations for
specific features and a thick black arrow between two points …

Diagram Generation

…
\draw[step=0.5cm,gray, thin] (-2,-2) grid (2,2);
\draw[thick,->] (2.3,2) -- (2.3,-2);
\draw[thick,->] (-2,2.4) -- (2,2.4);
\draw [above] (0,2.4) node{M};
\draw [above] (2.5,-0.30) node{N};
\draw[step=0.5cm,gray, thin] (5,-2) grid (5.5,2);
\draw[step=,gray, thin] (5,-2) grid (5,2);
…

Figure 17. Example of diagram generation.

Diagram Generation Given a textual description, DI-
AGRAMAGENT generates a corresponding diagram. Fig-
ure 17 presents an example where the system correctly con-
structs structural elements, including grids, arrows, and la-
beled components, while maintaining spatial alignment.

Diagram Editing Beyond generation, DIAGRAMAGENT
allows interactive modifications based on user-specified ed-
its. Figure 18 illustrates an example where the system suc-

Diagram Editing

…
\\draw [below] (0,-2.3) node{GEI};
\\fill[red!20](-2,1.5) rectangle (2,2);
\\fill[red!20](5,1.5) rectangle (5.5,2);
\\draw[thick,->] (5.8, 2) -- (5.8,-2);
…
\\draw[->, >=latex, purple!20!white, line width=10pt]
…

Adjust the arrow connecting the two grids to be purple,
set the first row of the grid to have a red color with
opacity control and a gradient effect, and maintain the
overall size of the diagram…

Figure 18. Example of diagram editing.

cessfully updates diagram attributes, including modifying
arrow colors, adjusting grid configurations, and refining an-
notations.

	Introduction
	Related Work
	Text-to-image generation
	Text-to-code generation

	Preliminaries
	Method
	Plan Agent
	Code Agent
	Diagram-to-Code Agent
	Check Agent

	DiagramGenBenchmark
	Data Statistics
	Evaluation Metrics

	Experiment
	Diagram Generation
	Diagram Coding
	Diagram Editing
	Human Evaluation

	Conclusion and Limitations
	DiagramGenBenchmark Details
	Dataset Curation
	Dataset Task
	Dataset Distribution

	Detailed Prompts for DiagramAgent
	Comparison with Existing Benchmarks
	Human Evaluation Details
	Diagram Coding Complete Results
	Error Analysis
	Diagram Generation Errors
	Diagram Coding Errors
	Diagram Editing Errors

	Qualitative Analysis

