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1. Data Augmentation
During training, the most straightforward input is the log-
chroma histogram of an image. However, this approach
overlooks spatial information and does not utilize additional
sources of information, such as edges or spatial neighbor-
hood relationships. In the main paper, we estimate the most
accurate illumination L by filtering a set of histograms N
constructed from the log-chroma values and local absolute
deviation metrics of the pixels in the image I .

Beyond this, the model can also process a set of his-
tograms {Nj} derived from a group of ”augmented” im-
ages {I ′j}. The filtered responses of these histograms are
aggregated and passed through a softmax function to com-
pute probabilities. These augmented images incorporate
edge and spatial statistical information from I , enabling the
model to leverage multiple information sources.

It is important to note that the chroma histograms must
maintain a precise mapping between channel scaling in the
input image and shifts in histogram space. As a result, aug-
mented images must be non-negative and preserve intensity
scaling. We experimented with four types of augmented
images:
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where I1 is the original image I , I2 is the high-pass filtered
version enhancing edges with a Laplacian-like filter and en-
suring non-negative values via max(0, ·), I3 is the cube root
of a blurred cubic version of I with b(I3, 9) representing a
9-pixel neighborhood blur, I4 is the local standard devia-
tion computed as the square root of the difference between
the blurred squared intensity b(I2, 3) and the square of the
blurred intensity b(I, 3)2, and I5 is the average absolute de-
viation of a pixel from its 3× 3 neighbors, calculated as the
mean of absolute differences.

The experimental results, presented in Table 1, indicate
that when the model is provided with histograms from four
different types of augmented images, there is a noticeable
improvement in performance. However, this enhancement
comes at the cost of reduced processing speed. After bal-

ancing both performance and efficiency, the combination of
I + I5 emerges as the most optimal approach.

Mean Med. Best 25% Worst 25% Time(ms)
I 2.31 2.03 0.57 6.14 -
I+I2 2.04 1.84 0.46 5.18 4.9
I+I3 2.07 1.88 0.48 5.29 11.3
I+I4 2.09 1.92 0.49 5.31 13.8
I+I5 1.98 1.79 0.42 4.91 6.2
I+I2+I3+I4+I5 1.90 1.74 0.40 4.79 35.7

Table 1. The effect of different data augmentations on model
performance. Experiments were conducted on the LSMI Galaxy
dataset, with window and overlap sizes set to 128 and 64, respec-
tively.

2. Histogram Features
In the main paper, we set the number of bins to 64. Next,
we will investigate the impact of varying bin sizes on the
experimental results. The experiments are conducted on the
LSMI Galaxy dataset, using two histograms as input: (1)
the pixel intensity distribution in log-chroma space (I1), and
(2) the gradient intensity histogram I5. To ensure that the
data distribution within the dataset is fully contained within
the defined u and v bounds, the range of u and v was set to
[−2.525, 2.525].

The experimental results, as shown in the Table2,
demonstrate that when the number of bins n is too small, the
color distribution is overly simplified, leading to a reduction
in the amount of color detail captured by the model. This,
in turn, hampers the model’s ability to accurately recover
true colors under diverse lighting conditions. Conversely,
when n is too large, model performance tends to degrade.
The increased number of bins may capture more noise than
meaningful information. Furthermore, an excessive num-
ber of bins can lead to data sparsity, especially in smaller
datasets, where each bin contains less information, thereby
affecting the model’s feature extraction capabilities.

Mean Med.
Best
25%

Worst
25%

n=16 2.79 ± 0.01 2.39 ± 0.01 0.90 ± 0.01 5.47 ± 0.01
n=32 2.17 ± 0.01 1.84 ± 0.01 0.51 ± 0.01 4.98 ± 0.01
n=64 1.98± 0.01 1.79± 0.01 0.42± 0.01 4.91± 0.01
n=128 2.19± 0.01 1.81± 0.01 0.41± 0.01 5.05± 0.01

Table 2. Impact of varying bin numbers n on model performance.



3. Extensions of IFFCC
In the main paper, we learned a set of weights that deter-
mine the shape of the filters used in frequency-domain con-
volution, as well as the gain and bias of those filters. Here,
we extend IFFCC by learning a mapping from each train-
ing sample xi to a set of weights wi, rather than learn-
ing a single model. We optimize the weights in a small
neural network with a ReLU activation function. Similar
to other experiments, we use L-BFGS for training; how-
ever, the ’pretraining phase’ from previous experiments is
removed, and we train for 64 iterations only. The network
weights are initialized with random Gaussian noise, and
the weights w are indirectly regularized during the train-
ing process. This network-based methodology enhances the
model’s capability to infer information beyond simple pixel
and edge log-chroma histograms, incorporating higher-level
features such as semantic information and camera metadata.

To obtain additional information from images (meta-
data), we conducted experiments on the Shadow dataset,
which includes metadata for each image captured by dif-
ferent cameras, such as exposure time and aperture size.
When the network is aware that the images come from two
different sensors, it can better handle the mapping relation-
ships. Exposure time and similar metadata provide useful
cues for distinguishing between ambient light and artificial
light sources. Experimental results demonstrate that these
metadata features are highly informative, significantly im-
proving model performance and reducing error. We encode
the additional information as a feature vector:

E = vec ([log(A); log(B); log(C); 1; 1])× ei

ei = [0, . . . , 0, 1, 0, . . . , 0] ∈ RN
(2)

where A represents the shutter speed, B represents the im-
age’s f-number, and C represents the ISO. The i-th element
of ei is 1, with the remaining elements being 0, representing
the name of the i-th camera.

We performed experiments using the nighttime scene
from the Shadow dataset, which contains images captured
by five distinct cameras. As demonstrated in the table, in-
corporating additional metadata (such as shutter speed, ISO,
aperture size, and camera name) into the neural network
significantly enhanced the model’s performance. This im-
provement can be attributed to the fact that the sensor char-
acteristics and exposure settings of different cameras have a
substantial effect on the color and brightness of the images.
By integrating this metadata, the model is better equipped
to comprehend and adapt to the shooting conditions of var-
ious cameras, resulting in more accurate color restoration,
particularly under diverse lighting conditions. Furthermore,
the metadata offers valuable contextual information regard-
ing the camera and shooting environment, thereby facilitat-
ing more effective color correction and color recovery. As

a result, the inclusion of this metadata substantially boosts
the model’s overall performance. However, when the net-
work depth was increased, we observed a slight decrease in
performance, which may be attributed to overfitting.

Mean Med. Best 25% Worst 25%
- base 2.85 1.53 0.54 7.43

L=2 deep+A 2.69 1.50 0.54 6.93
L=2 deep+B 2.71 1.52 0.53 6.94
L=2 deep+C 2.66 1.51 0.53 6.86
L=2 deep+A+B+C 2.56 1.47 0.52 6.52
L=4 deep+A+B+C 2.65 1.50 0.56 6.82
L=6 deep+A+B+C 2.69 1.53 0.57 6.88

Table 3. Variants of IFFCC. ’deep’ indicates the use of a network
to learn a set of parameters, where ’L’ represents the number of
layers, and ’A’, ’B’, ’C’ correspond to different types of encoded
additional information. The number of hidden neurons in each
layer of the network is set to 4.

4. Temporal Color Constancy
Our proposed IFFCC extends FFCC by introducing an inte-
gral histogram, which significantly enhances performance
in multi-illuminant scenarios. FFCC constructs a tempo-
rally coherent illuminant estimate using a probabilistic per-
frame model, which generates a posterior distribution over
illuminants parameterized as a bivariate Gaussian. IFFCC
further refines this process by leveraging the integral his-
togram to capture spatially varying illuminants more effec-
tively. This addition allows IFFCC to aggregate illumina-
tion information over regions of interest, improving robust-
ness against complex lighting conditions. By integrating the
Kalman filter with the integral histogram, IFFCC achieves
superior temporal consistency and adaptability, making it
particularly effective in dynamic, multi-light-source envi-
ronments. We evaluated the performance of IFFCC on the
temporal color constancy dataset [1], and the results are
shown in Fig. 1.

5. More Visual
To further highlight the effectiveness of our method, we
present additional visual comparison results in the supple-
mentary materials. These results cover a range of challeng-
ing scenarios, including complex lighting conditions, di-
verse color distributions, and intricate spatial arrangements,
as illustrated in Fig. 2, Fig. 3, and Fig. 4.
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Figure 1. Performance of IFFCC on the Temporal Color Constancy (TCC) dataset. The images from left to right correspond to different
frames from the same video sequence, demonstrating the model’s ability to maintain temporal consistency in color constancy estimation.

Figure 2. More visual results on the LSMI dataset. (a) represents the input RAW image, (b) shows the illumination map and white-balanced
image predicted by our model (both visualized after color correction and gamma correction for better clarity), and (c) depicts the ground-
truth illumination map and white-balanced image (also visualized after color correction and gamma correction). The window size and
overlap size for IFFCC are set to 32 and 16, respectively.



Figure 3. More visual results on the Shadow dataset. (a) represents the input RAW image, (b) shows the illumination map and white-
balanced image predicted by our model (both visualized after color correction and gamma correction for better clarity), and (c) depicts the
ground-truth illumination map and white-balanced image (also visualized after color correction and gamma correction). The window size
and overlap size for IFFCC are set to 32 and 16, respectively.



Figure 4. More visual results on the Shadow dataset. (a) represents the input RAW image, (b) shows the illumination map and white-
balanced image predicted by our model (both visualized after color correction and gamma correction for better clarity), and (c) depicts the
ground-truth illumination map and white-balanced image (also visualized after color correction and gamma correction). The window size
and overlap size for IFFCC are set to 32 and 16, respectively.
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