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Supplementary Material

In this document, we first provide implementation details
including data preprocessing of nuScenes [1] (Sec.1.1), net-
work architecture and hyperparameters (Sec.1.2). We fol-
low with additional experiment discussions including intro-
duction to our supplementary videos (Sec.2.1), quantitative
comparisons with more baseline methods (Sec.2.2), runtime
analysis (Sec.2.3), more ablations (Sec.2.4), further discus-
sions on generalizability to larger bins (Sec. 2.5) and effec-
tiveness of our Volume-Pixel Collaboration (Sec. 2.6), more
qualitative results on scene-centric reconstruction (Sec.2.7).
We strongly recommend readers to view the accompanying
supplementary video (“video.mp4”), which contains 360-
degree exploring videos of both reconstructed and synthetic
scenes, as well as comparisons with other methods.

1. Additional Implementation Details
1.1. Data Preprocessing
As described in Sec.4.1 of our main manuscript, we parti-
tion each scene of nuScenes dataset [1] into equally spaced
bins, with each bin serving as one data sample. For
nuScenes dataset, each video is captured in a single scene
along with the car trajectory. The length of the trajectory
ranges drastically from several meters to hundreds of me-
ters. If we segment the trajectory into bins according to
frame indexes, the spatial ranges of bins would exhibit sig-
nificant variation, which leads to non-IID data distribution
for training and evaluation. To circumvent this issue, we
segment the bins based on the distance traveled by the car as
detailed in Fig.1. Specifically, for videos with a trajectory
length exceeding 3.2 meters, we uniformly segment them
into N bins, each 3.2 meters in length. For each bin, we
use the central frame with 6 surrounding images to derive
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Figure 1. Data preprocessing of nuScenes [1].

the observed input views, and the first and last frames with
12 surrounding images as the novel views. For videos with
a trajectory length less than 3.2 meters, we directly use the
first and last frames of the video as the novel views.

1.2. Network Architecture and Hyperparameters
In Table 1(a), the order from top to bottom are the param-
eters of Triplane Transformer (i.e., number of transformer
layers, embedding dimensions, number of 2D and 3D ref-
erence points used in our cross-image and cross-plane de-
formable attentions, and number of attention heads), Voxel
Decoder (i.e., number of Gaussians decoded for each voxel,
number of linear layers used for decoding Gaussian parame-
ters), Multi-View U-Net (i.e., feature dimensions and patch
sizes of patchified cross attentions [4] used in U-Net down-
sample and upsample blocks), Pixel Decoder (i.e., number
of convolution layers used for decoding Gaussian parame-
ters), respectively. In Table 1(b), we specify loss weights
for Eq.(4) in our main manuscript, which is followed by pa-
rameters used in our training phase.

(a) Network Architecture

2D Image Encoder backbone R50-DINO [2]
neck FPN (P2 only) [10]

Triplane Transformer

# layers 3
# embed dims 128
# 2D ref points 8, 16, 16
# 3D ref points 16, 16, 16
# attn heads 8

Voxel Decoder # Gaussians per voxel 3
# linear layers 3

Multi-View U-Net

# downsample feats 128, 256, 512, 512
# upsample feats 512, 512, 256, 128
# downsample patches 8, 8, 4, 2
# upsample patches 2, 4, 8, 8

Pixel Decoder # conv layers 3

(b) Hyperparameters

Loss Weights # λ1, λ2, λV1
, λV2

0.05, 1.0, 0.05, 0.01

Training Details

learning rate scheduler Cosine
# iterations 100,000
# learning rate 1e-4
optimizer Adam [9]
# beta1, beta2 0.9, 0.999
# weight decay 0.01
# warm-up 1000
# gradient clip 1.0

Table 1. Details of network architecture and hyperparameters. In
the table, “#” denotes numerical parameters. We present parame-
ters that specify our network architecture, and parameters used in
our loss functions and training phase, in (a) and (b), respectively.



Method Time(s) Param(M) PSNR↑ SSIM↑ LPIPS↓ PCC↑
AttnRend [6] 9.98 125.1 20.96 0.533 0.467 N/A
MuRF [13] 0.672 5.3 20.34 0.504 0.433 -0.332
pixelSplat [3] 0.508 125.4 21.51 0.616 0.372 0.001
MVSplat [5] 0.174 12.0 21.61 0.658 0.295 0.181
Ours 0.088 81.7 24.27 0.736 0.237 0.800

Table 2. Additional quantitative results on ego-centric reconstruction task performed on nuScenes [1]. We bold 1st-place results and
underline 2nd-place results. PCC is not available (N/A) for AttnRend which has no interpretable 3D structure for depth rendering.

2. Additional Experiments

2.1. Video Results
To better demonstrate the quality of 3D reconstruction,
we provide exploring video demos in “video.mp4” along
with our supplementary material. Specifically, given six
surrounding images of a scene, we conduct inference and
obtain 3D Gaussians for reconstructing the scene. Then,
we utilize these Gaussians to render a 360-degree rotation
video at 30fps with the camera FOV set to 70 degree follow-
ing [1]. In the video, each frame that falls between the input
viewpoints can be considered as a novel view unseen in the
inputs. To further demonstrate the model’s performance in
the presence of object occlusions and frustum truncations,
we move the camera forward and backward by 3 meters in
the front and rear view perspectives, respectively, ensuring
that there are contents invisible from the input views. It’s
also noted that the camera’s movement range has reached 6
meters, exceeding the 3.2-meter range of bin samples seen
during training, thereby showcasing the model’s capability
to reconstruct scenes at greater distances.
Comparisons with other methods. We first present com-
parisons with state-of-the-art methods pixelSplat [3] and
MVSplat [5] from 00:00 to 01:40 in “video.mp4”. Our
approach significantly outperforms other methods in both
visual and geometric quality. Notably, due to the mini-
mal cross-view overlap among input views, pixelSplat and
MVSplat fail to predict accurate depths based on pixel-level
3D priors (e.g., epipolar lines, cost volumes), which results
in artifacts in the rendered videos especially when the cam-
era is substantially moved forward and backward.
Exploring videos of reconstructed scenes. Then, we
present more examples to illustrate our functionality on
scene reconstruction. Examples with normal conditions are
shown from 01:41 to 02:49 in “video.mp4”. Examples with
extreme conditions (e.g., low-light, bad weather) are shown
from 02:50 to 03:26 in “video.mp4”. We can see that our
method achieves high-quality reconstruction and maintains
robustness in both normal and hard cases.
Exploring videos of generated scenes. We also present
examples to illustrate our functionality on scene generation
from 03:27 to 05:07 in “video.mp4”. The left side of the
video shows the our generated results given different ran-
dom seeds. The right side of the video shows examples of
MagicDrive3D [7], which are directly adopted from their

official website1. We can see that our method achieves bet-
ter visual details than per-scene optimization-based Magic-
Drive3D in a much more efficient feed-forward manner.

2.2. Comparisons with More Baselines
We also make comparisons with more baseline methods
(i.e., MuRF [13] and AttnRend [6]) for ego-centric sparse-
view reconstruction task. Specifically, MuRF and AttnRend
are feed-forward reconstruction methods based on NeRF
[11] and light field [12], respectively. They are both leading
and representative methods within their respective lines of
works, which constitute the mainstream feed-forward meth-
ods together with 3DGS-based approaches such as pixel-
Splat [3] and MVSplat [5]. As shown in Table 2, our method
surpasses MuRF and AttnRend significantly in terms of all
metrics. We can also observe that methods with explicit
Gaussians as representations (i.e., ours, pixelSplat, MVS-
plat) outperform methods with implicit NeRF or light field
as representations (i.e., AttnRend, MuRF), showing the ef-
fectiveness of explicit 3D representation.

2.3. Runtime Analysis
As shown in Table 2, we conduct runtime analysis on
the ego-centric reconstruction task to demonstrate the ef-
ficiency of our method. It’s noted that the inference speed
is reported based on the time cost of six-view reconstruc-
tion averaged by 2,048 times. From the table, we can see
that our method achieves the shortest inference time (i.e.,
“Time” in Table 2), which is nearly 2× faster than that of the
2nd place method MVSplat [5]. We attribute this advantage
to our triplane-based volume feature encoding in Triplane
Transformer, and efficient patchified cross-attention mod-
ule in Multi-View U-Net. Besides, our method is also light-
weight with model size (i.e., “Param” in Table 2) compara-
ble to other methods. Furthermore, we observe that, thanks
to the efficient rendering of 3DGS [8], 3DGS-based meth-
ods (i.e., our method, pixelSplat [3], MVSplat [5]) show
significant superiority in speed compared to methods based
on implicit representations (i.e., MuRF [13], AttnRend [6]).

2.4. Additional Ablations
We present more ablation results to demonstrate the effec-
tiveness of our components.
Qualitative Ablations on Volume-Pixel Collaboration. In

1https://gaoruiyuan.com/magicdrive3d/
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Figure 2. Qualitative ablations on Volume-Pixel Collaboration. Images of input views (Inputs) and ground-truth novel views (GTs) are
outlined by orange and blue rectangles, respectively. The remaining are novel-view images and depths generated by our variant models and
full model. From left to right, the order is the variant without Depth-Guided Training Decomposition, the variant without Projection-Based
Feature Fusion, and our full method. The red dashed lines highlight undesirable artifacts (e.g., noise, over-smooth), while the green ones
denote plausibly-rendered areas (e.g., better and sharper details). We also show PSNR values of the generated images for better comparison.

our main manuscript, we have quantitatively compared our
full method with the two variants without the Volume-Pixel
Collaboration designs (i.e., Projection-based Feature Fu-
sion and Depth-Guided Training Decomposition). Here,
we show additional qualitative results in Figure 2 for vi-
sual comparisons. It can be observed that our full method
can generate images with higher quality and depths with
sharper details, which demonstrate that our collaboration
designs can effectively encourage the complementarity be-
tween pixel-based and volume-based Gaussian representa-
tions, and further improve the performance.
Qualitative Ablations on Depth Initialization. In our
main manuscript, we have quantitatively demonstrate the

effectiveness of depth initialization for our pixel-based
Gaussian representation. Here, we show additional quali-
tative results in Figure 3 for visual comparisons. From the
figure, we can see that, although the depth initialization has
no significant impact on visual quality, it is beneficial for
improving geometric quality. The main reason is that the
depth initialization can ease the learning of complex scene
geometries for our Pixel Decorator that built upon pixel-
based representation. Besides, with the collaboration of
volume-based representation, our full method significantly
surpasses the two variants with only pixel-based representa-
tions both visually and geometrically, further demonstrating
the advantage of our Omni-Gaussian representation.
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Figure 3. Qualitative ablations on Depth Initialization. The 1st column present images of input views (Inputs) and ground-truth novel
views (GTs). The 2nd and the 3rd columns are results generated by two variant models with only pixel-based representation (i.e., Pixel
Decorator), one with the depth initialization and one without. The last column denote results generated by our full method. The red dashed
lines highlight undesirable artifacts, while the green ones denote plausibly-rendered areas. PSNR values are shown for better comparison.

Ablations on Deformable Attentions. As described
in Sec.3.1 of our main manuscript, we employ cross-
image and cross-plane deformable attentions in our Vol-
ume Builder to enhance volumetric feature encoding. Given
camera parameters (i.e., intrinsics and extrinsics) that en-
able 3D-to-2D projection, our cross-image deformable at-
tention module can lift 2D features to the 3D volume space,
which enables the prediction of 3D Gaussians directly at
the 3D level. This differs from previous methods [3, 5]
that require cross-view overlap to estimate per-pixel depths
and predict 3D Gaussians at the 2D level. To further ad-
dress the issue that some elements in 3D might be occluded
or truncated for any of the 2D input views, we utilize our
cross-plane deformable attention to enhance each triplane
query with cross-plane context, which means information
absent in one plane can be complemented by those from

other planes at the 3D level. To validate the effectiveness
of such dual-path design, we train three Volume Builder
models, where one contains both of the cross-image and
cross-plane attentions, while the other two contain only one
of the attentions. As demonstrated in Table 3 and Fig. 4,
the model with both attentions significantly outperforms the
other two variants, showing the importance of such dual-
path feature encoding to our Volume Builder. We further
compare these volume-only variants with our full method

cross-image cross-plane PSNR↑ SSIM↑ LPIPS↓ PCC↑
✗ ✓ 14.29 0.428 0.578 0.539
✓ ✗ 21.29 0.595 0.412 0.686
✓ ✓ 22.21 0.640 0.357 0.701

Table 3. Ablations on cross-image & plane deformable attentions.
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Figure 4. Qualitative ablations on deformable attentions. The 1st column present images of input views (Inputs) and ground-truth novel
views (GTs). The 2nd to 4th columns are results generated by three variant models with only volume-based representation (i.e., Volume
Builder), one without the cross-image deformable attention (“cross-img attn.”), one without the cross-plane deformable attention (“cross-
plane attn.”), and one with both of the attentions. The last column denote results generated by our full method. The red dashed lines
highlight undesirable artifacts, while the green ones denote plausibly-rendered areas. PSNR values are shown for better comparison.

in Fig. 4. It’s observed that results generated by our full
method are with better details, showing the effectiveness of
our Omni-Gaussian representation.

2.5. Generalizability to Different Bin Sizes

Unless otherwise specified, our experiments are conducted
with a bin size of 3.2m as stated in Sec.1.1. To validate
whether our method can be generalized to synthesize novel
views at farther or closer distances, we preprocess nuScenes
[1] into three variants with different bin sizes (i.e., 1.6m,
6.4m, 12.8m) from our original dataset. Here we note that,
the larger the bin size, the farther distance between the novel
and the input views, which is more challenging for novel
view synthesis. Practically, for each dataset variant, we
employ two approaches to test our model: (1) The model

trained under a bin size of 3.2m is directly used for evalu-
ation without additional fine-tuning. (2) The model is fur-
ther fine-tuned with the new bin size for 50,000 steps before
evaluation. As can be seen from the 3rd, 5th and 7th rows of
Table 4, despite the lack of supervision, our method exhibits
minor degradation in performance for novel view synthesis
at farther distances. For instance, we observe only 1.38 dB
drop of PSNR, and 0.009 drop of PCC for “bin size = 6.4m”,
which denotes distances 2× farther than those seen during
training. As can be seen from the 4th, 6th, and 8th rows
of Table 4, by fine-tuning the model on data renewed with
different bin sizes, we can further boost the performance
and bring novel view synthesis at farther distances (i.e., “bin
size = 6.4m, 12.8m”) very close to the results obtained un-
der the original setting of “bin size = 3.2m”.



bin size fine-tuning PSNR↑ SSIM↑ LPIPS↓ PCC↑
3.2m – 24.27 0.736 0.237 0.800

1.6m ✗ 25.12+0.85 0.771+0.035 0.208−0.030 0.804+0.004

✓ 25.37+1.10 0.783+0.047 0.201−0.037 0.806+0.006

6.4m ✗ 22.89−1.38 0.682−0.054 0.287+0.050 0.791−0.009

✓ 24.15−0.12 0.729−0.007 0.239+0.002 0.797−0.003

12.8m ✗ 21.57−2.70 0.640−0.096 0.346+0.109 0.771−0.029

✓ 23.55−0.72 0.711−0.025 0.265+0.028 0.792−0.008

Table 4. Results of our method when generalized to different bin sizes with or without additional fine-tuning.
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Figure 5. Additional examples of Volume-Pixel Collaboration. The red dashed lines highlight artifacts caused by weaknesses of singular
representations, while the green ones outline how the artifacts are eliminated through Volume-Pixel Collaboration.

2.6. Discussion on Volume-Pixel Collaboration
In Fig.2 of our main manuscript, we have showcased pros
and cons of the pixel-based and the volume-based Gaus-
sian representations, and have provided the corresponding
examples to illustrate how the two representations comple-
ment for each other in our unified model with the proposed
Omni-Gaussian representation. Here, we present more ex-
amples in Fig.5 to demonstrate the effectiveness of their col-
laboration case by case:
• In “Case 1” of Fig.5, when objects in the novel view

are occluded in the input views, pixel-based representa-
tion focuses on the non-occluded areas, with the occluded
parts supplemented by volume-based representation.

• In “Case 2” of Fig.5, when objects in the the novel view
fall beyond the frustum range for any of the input views,
pixel-based representation focuses on the non-truncated
areas, with the truncated parts supplemented by volume-

based representation.
• In “Case 3” of Fig.5, for distant elements out of the vol-

ume range, volume-based representation concentrates on
reconstruction within the volume, leaving the reconstruc-
tion of distant elements to pixel-based representation.

• In “Case 4” of Fig.5, for objects with fine-grained details
(e.g., cars, lane markings), volume-based representation
aims to predict their coarse 3D structures, leaving the sur-
face details to pixel-based representation.

2.7. Additional Comparisons on RealEstate10K

As shown in Fig.6, we present more qualitative comparisons
with state-of-the-art methods pixelSplat [3] and MVSplat
[5] on RealEstate10K [14], which is a large-scale dataset
for scene-centric reconstruction task. We can see that our
method can render novel view images and depths with com-
parable and even superior quality to other methods.



Inputs GTs pixelSplat MVSplat Ours

Figure 6. Additional qualitative results on scene-centric reconstruction performed on RealEstate10K [14]. The first two columns are images
of input views and ground-truth novel views. The remaining three columns are results generated by pixelSplat [3], MVSplat [5] and our
method, respectively. The red dashed lines highlight undesirable artifacts, while the green ones denote plausibly-rendered areas.
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