PCDreamer: Point Cloud Completion Through Multi-view Diffusion Priors

Supplementary Material

In this supplementary, we present experiments on ad-
ditional datasets (i.e., ScanObjectNN [6], KITTI [I],
ShapeNet-55 [8]) to demonstrate the generalization ability
of our method on real-world scans, as well as randomly
cropped general partial points clouds. Besides, we show
complementary visual results on PCN [9] and ShapeNet-
55 [8] datasets and present additional visual examples when
comparing our approach against SDS-Complete [2] and
other single-view 3D generation methods.
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Figure Al. Visual results on real scanned and randomly cropped
datasets. The first and second rows are real scanned data from
ScanObjectNN and KITTI, while the third row is randomly
cropped models from ShapeNet55. The converted single-view
depth image and generated multi-view depth images are shown
in columns two and three.

Real-world scans and general partial point clouds. As
stated in Sec. 1 in the paper, completing a single-view par-
tial point cloud is actively studied and much more challeng-
ing than completing a general one, since it usually misses
more than half of the points (see the chair and lamp in Fig.
1 in the main paper). Due to the unique setting, we thus de-
sign our PCDreamer, dedicated to completing a single-view
partial point cloud faithfully. However, thanks to the robust-
ness of the large diffusion models and our fuser and con-
solidator, PCDreamer can work on general partial clouds
well. Following the convention, we did not emphasize and
report this advantage in the paper, but preliminary visual
results are presented in Fig. Al, where PCDreamer suc-
cessfully completes both LiDAR point clouds and randomly
cropped ShapeNet55 point clouds. Indeed, a perfect single-
view depth image is not feasible in this case, we thus se-
lect the most informative view and obtain the ‘incomplete’
depth image serving as the input of our method. To mitigate
the incompleteness and potential quality degradation in the
initial depth map, we employ a larger guidance scale (e.g.,
9.0) along with more complex text prompts in ControlNet.
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Figure A2. The visual comparison with SDS-Complete.

This strategy effectively enhances the quality of the gener-
ated RGB images. Extending our method to handle arbi-
trary multi-view depth images is a promising direction, we
leave it for future work.

Comparison with SDS-Complete [2]. We have con-
ducted a visual comparison with SDS-Complete, which ex-
ploits diffusion priors with SDS optimization. The results
in Fig. A2 demonstrate that while SDS-Complete is capa-
ble of recovering the overall shape, it fails to capture fine
details, such as the leg and the armrest of the chair.

Additional Comparison with 3D generation methods.
In Fig. A3, we present additional comparisons with other
3D model generation methods [5, 7]. Moreover, we pro-
vide further examples from the PCN dataset for compre-
hensive evaluation. As illustrated in the figure, the lack
of extra views, the randomness in the generation process,
and the inherent inconsistencies in multi-view images often
prevent single-view 3D model generation methods from ef-
fectively capturing geometric details. Consequently, these
models may produce shapes that, while plausible, exhibit
significant deviations from the ground truth, such as vari-
ations in the width of the sofa. Therefore, multi-view im-
ages are more appropriate as auxiliary cues for point cloud
completion, although directly utilizing them for point cloud
completion typically yields suboptimal results.

Additional results on PCN and ShapeNet-55 dataset.
Figs. A4 and A5, each presents an extra six results from
the PCN and the ShapeNet-55 datasets, respectively. For
both datasets, the first three cases in the first three rows pos-
sess high-quality and consistent multi-view depth images,
whereas depth images with lower quality and less consis-
tency are generated for the last three examples. Specifically,
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Figure A3. Additional visual comparisons with 3D model generation baesd on single-view RGB image.

the high randomness of the generation process, combined
with limitations of the initial view, can result in multi-view
depth images exhibiting inconsistencies across views (e.g.,
the lid of the Dustbin), missing geometric details(e.g., the
Helmet), and the presence of noisy regions (e.g., the leg of
the Table). Furthermore, shapes imagined by the genera-
tive model may exhibit scale discrepancies relative to their
real-world counterparts (e.g., the Sofa and the Table). In
addition, the depth estimation process may also occasion-
ally produce suboptimal outcomes (e.g., the Dishwasher).
However, the proposed confidence-based shape consolida-
tor effectively addresses these issues by eliminating unre-
liable points caused by inconsistencies in diffusion priors.
As a result, our models produce accurate and reasonable
outputs, as demonstrated in the second and fourth columns
of the last three examples.
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Figure A4. Visual results as well as multi-view depth images on the PCN dataset. The generated multi-view depth images corresponding
to the last three rows exhibit lower quality and less consistency than the first three rows.



Input

GT
Figure AS. Visual results as well as multi-view depth images on the ShapeNet-55 dataset. The generated multi-view depth images
corresponding to the last three rows exhibit lower quality and less consistency than the first three rows.
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