UniNet: A Contrastive Learning-guided Unified Framework with Feature
Selection for Anomaly Detection

Supplementary Material

1. Overview

The supplementary material is organized as follows: Ap-
pendix 2 provides additional details on the datasets and the
implementation of UniNet. Appendix 3 presents further ex-
perimental results on the MVTec AD, BTAD, VisA, and
MVTec 3D-AD datasets, as well as the complexity analy-
sis of UniNet. Appendix 4 presents supplementary ablation
study results. Appendix 5 includes additional visualization
results across various datasets. Appendix 6 discusses the
limitations and potential directions for future work.

2. Experimental setup

2.1. Datasets

MVTec AD [2] is a widely used dataset for industrial
anomaly detection, comprising 15 object and texture cat-
egories with a total of over 5,000 images. The dataset
contains various types of anomalies, such as scratches and
crackes. Each category includes a training set consisting
solely of normal images and a test set of containing both
normal and abnormal images.

BTAD [24] is a real-world industrial dataset consisting
of 3 different types of industrial products. The dataset con-
tains 2830 images, with 400, 1,000, and 399 training images
in class 1, 2, and 3, respectively.

VisA [36] is a publicly available dataset for visual
anomaly detection, comprising 12 categories and a total of
10,821 high-resolution images from diverse domains such
as electronics, food, and industrial parts. The dataset in-
cludes both normal and anomalous samples, with detailed
annotations for the anomalies.

MVTec 3D-AD [3] is a multi-modal dataset that includes
two different modality: RGB images and Point Clouds. The
dataset consists of 10 real-world categories with a total of
4147 high-resolution images.

VAD [I] is a newly introduced supervised benchmark
designed to encompass a wider array of complex anomalies
and substantial intra-class variability in anomalous-free im-
ages. The dataset contains 5,000 object images, with 165
unseen anomalous images reserved for testing.

APTOS [27] is a collection of color fundus images from
the 2019 APTOS blindness detection challenge. Each im-
age is associated with a label (ranging from O to 4) that indi-
cates the severity of diabetes retinopathy, with grade O rep-
resenting normal images.

OCT2017 [16] is a dataset of optical coherence tomog-
raphy images, with one class labeled as normal and three
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other classes labeled as abnormal. The dataset contains over
20,000 images, with 1000 images used for testing.

ISIC2018 [7] is a collection of skin disease images from
Task 3 of the ISIC2018 challenge. The dataset includes
seven classes, with nevus labeled as the normal class and
the remaining classes representing various types of anoma-
lies. Following [10], 6705 normal images from training set
are used, while the validation set of 193 images serves as
the test set.

Kvasir [15], CVC-ClinicDB [4], and CVC-ColonDB
[28] are three polyp segmentation datasets, containing a to-
tal of 1,000, 612, and 379 images, respectively, sourced
from diverse imaging clinics and centers. Each image is
accompanied by a corresponding pixel-level mask.

Ped2 [19] is a dataset designed for video anomaly detec-
tion, consisting of 2.6K frames for training and 2.0K frames
for testing. The anomalies in the dataset include cycling,
skateboarding, efc.



(a) MVTec AD

Category UniNet(Ours) ReContrast [10] RealNet [35] ReConPatch [14] GLAD [32] RD++ [29] DMAD [21]
Carpet 100.0/99.2/97.5 99.8/99.3/97.9 99.8/99.2/96.4 99.6/98.8 /- 99.0/98.5/— 100.0/99.2/97.7 —/=/-
Grid 99.5/99.4/98.0 100.0/99.2/97.8 100.0/99.5/97.3 100.0/99.0/ - 100.0/99.6 /- 100.0/99.3/97.7 —/-/-
Leather 100.0/99.5/98.3 100.0/99.5/99.2 100.0/99.8796.2 100.0/96.0/ - 100.0/99.8 /- 100.0/99.4/99.2 —/-/-
Tile 99.5/97.3/90.9 99.8/96.3/93.6 100.0/99.4/97.7 99.8/98.9 /- 100.0/98.7 /- 99.7/96.6/92.4 —/—=1-
Wood 100.0/99.2/98.1 99.0/95.9/92.5 99.2/98.2/90.5 99.7/98.9 /- 99.4/98.4 /- 99.3/95.8/93.3 —/=/-
Bottle 100.0/98.9/96.6 100.0/99.0/97.1 100.0/99.3/95.6 100.0/98.2 /- 100.0/98.9/— 100.0/98.8/97.0 —/-/-
Cable 100.0/98.5/93.7 99.8/98.9/95.6 99.2/98.1/93.9 99.8/99.3 /- 99.9/98.1/- 99.2/98.4/93.9 —/-/-
Capsule 100.0/99.0/94.8 97.7/98.4/95.4 99.6/99.3/84.5 98.8/97.6/— 99.5/98.5/- 99.0/98.8/96.4 —/=/-
Hazelnut 100.0/99.0/96.8 100.0/99.1/95.9 100.0/99.7/93.1 100.0/98.9/ - 100.0/98.5/ - 100.0/99.2/96.3 —/=/-
Metal nut 100.0/98.7/96.5 100.0/98.7/94.4 99.8/98.6/94.4 100.0/95.8 /- 100.0/98.8 /- 100.0/98.1/93.0 —/-/-
Pill 100.0/98.5/96.9 98.6/99.1/97.7 99.1/99.0/91.0 97.5/954/- 98.1/97.9/- 98.4/98.3/97.0 —/-/-
Screw 100.0/99.5/97.6 98.0/99.6/98.6 99.4/99.5/87.9 98.5/98.8 /- 96.9/99.1/—- 98.9/99.7/98.6 —/-/-
Toothbrush 100.0/99.1/93.4 100.0/99.2/95.0 100.0/98.7/91.6 100.0/98.9 /- 100.0/99.4 /- 100.0/99.1/94.2 —/—=/-
Transistor 100.0/97.7/94.7 99.7/95.4/82.3 99.8/98.0/92.9 100.0/99.6 /- 98.3/96.2/— 98.5/94.3/81.8 —/=/-
Zipper 99.5/98.7/95.9 99.5/98.1/94.9 99.6/99.2/93.4 99.8/98.6/— 98.5/97.9/- 98.6/98.8/96.3 —/-/-
Mean ‘ 99.90/98.81/96.00  99.46/98.41/9520  99.65/99.03/93.07 99.56/98.18/—  99.30/98.62/95.31 99.44/98.25/94.99  99.50/98.21 /-
(b) BTAD
Category ‘ UniNet(Ours) ReContrast [10] RealNet [35] ReConPatch [14] PyramidFlow [18] RD++ [29] PatchCore [25]
Class 01 100.0/97.2/81.7 100.0/97.0/78.6 100.0/98.2 /- 99.7/96.8 / — 100.0/97.4 /- 96.8/96.2/73.2 98.0/96.9/64.9
Class 02 93.2/96.3/60.1 89.5/96.2/57.0 88.6/96.3 /- 87.7/96.6 /- 88.2/97.6/- 90.1/96.4/71.3 81.6/95.8/47.3
Class 03 100.0/99.6/98.2 95.7/99.3/96.5 96.1/97.9 /- 100.0/99.0/ - 99.3/98.1/- 100.0/99.6/87.4 99.8/99.1/67.7
Mean ‘ 97.737197.70/ 80.01 95.06/97.50/77.40  96.07/97.90/— 95.80/97.47 /- 95.83/97.70/ — 95.63/97.41/717.30  93.13/97.27/59.97
(c) MVTec 3D-AD (d) The standard deviation
Category ‘ UniNet(Ours) ReContrast [10] BTF [13] Shape-Guided [6] M3DM [31] AST [26] PatchCore [25] Dataset A
Bagel 100.0/95.2 99.1/- 85.4/89.8 91.1/94.6 94.4/95.2 94.7 /- 91.2/89.9 0.03
Cable Gland 99.6/98.1 95.3/- 84.0/94.8 93.6/97.2 91.8/97.2 92.8 /- 90.2/95.3 MVTec AD 0.02
Carrot 100.0/97.3 92.7/- 82.4/92.7 88.3/96.0 89.6/97.3 85.1/- 88.5/95.7
Cookie 73.3/90.3 69.6/— 68.7/87.2 66.2/91.4 74.9/89.1 82.5/- 70.9/91.8 0.04
Dowel 100.0/98.4 97.5/- 97.4/92.7 97.4/95.8 95.9/93.2 98.1/- 95.2/93.0 0.01
Foam 92.8/85.4 82.5/- 71.6/55.5 77.21717.6 76.7/84.3 95.1/- 733/71.9 BTAD 0.05
Peach 98.9/98.1 95.0/- 71.3/90.2 78.5/93.7 91.9/97.0 89.5/- 72.77192.0 ’
Potato 98.6/95.8 67.9/- 59.3/93.1 64.1/94.9 64.8/95.6 61.3/- 56.2/93.7 0.03
Rope 99.9/99.0 98.8/— 92.0/90.3 88.4/95.6 93.8/96.8 99.2/- 96.2/93.8 0.99
Tire 94.5/97.9 87.9/- 72417899 70.6/95.7 76.7196.6 82.1/- 76.8/92.9 MVTec 3D-AD B
Mean ‘ 95.76 /1 95.55 88.63/95.20 78.52/87.63 81.51/93.30 85.03/94.22 88.00/ - 81.14/91.03 0.33

Table 1. Quantitative results (one-class) across three industrial datasets. We report [-AUROC / P-AUROC / PRO on the (a) MVTec AD
and (b) BTAD datasets. For the (c) MVTec 3D-AD dataset, P-AUROC is not presented. (d) Each cell, from top to bottom, represents the
standard deviation of I-AUROC, P-AUROC, and PRO. Best and second-best results are highlighted in red and blue, respectively.

2.2. Implementation details

UniNet was trained on a computer with NVIDIA GeForce
RTX 3090. Following [8, 10], we used the publicly avail-
able WideResNet50 pre-trained on ImageNet [9] as S-T
models. AdamW [23] was employed as the optimizer with
weight decay=1e-5, and the learning rate of 5e-3 and le-6
for the learnable student and teacher, respectively. Hyper-
parameters n, 7, 7, A, «, and 8 were set to 3, 2, 1, 0.7,
0.01, and 0.03, respectively. We generally trained for 100
epochs with a batch size of 8, except for three supervised
poly datasets (200 epochs), and three unsupervised medi-
cal datasets along with the VAD dataset (1000 iterations),
saving the best model for evaluation.

All images were resized into 256 x 256 without data
augmentation, except for the MVTec 3D-AD dataset and

three polyp segmentation datasets. For the MVTec 3D-AD
dataset, only RGB data were used for training and images
were first center-cropped before resizing them. Follow-
ing [5, 30], we adopted a multi-scale {0.75,1,1.25} train-
ing strategy for three polyp segmentation datasets. For a
fair comparison, we followed prior works that selected a
specific proportion of images from the Kvasir and CVC-
ClinicDB datasets for training, while the remaining images
were used for testing. For the CVC-ColonDB dataset, we
directly employed its training and test sets for training and
evaluation.

The procedure for the Weighted Decision Mechanism is
outlined in Algorithm 1. The Weighted Decision Mech-
anism was not applied to the three polyp segmentation
datasets, as only segmentation evaluation metrics were con-



(a) MVTec AD

Category UniNet(Ours) ReContrast [10] MambaAD [11] DiAD [12] DeSTSeg [34] SimpleNet [22 UniAD [33]
Carpet 99.4/99.8 98.3/— 99.8/99.9 99.4/99.9 95.9/98.8 95.7/98.7 99.8/99.9
Grid 99.1/99.7 98.9 /- 100.0/100.0 98.5/99.8 97.9/99.2 97.6/99.2 98.2/99.5
Leather 100.0/100.0 100.0 /- 100.0/100.0 99.8/99.7 99.2/99.8 100.0/100.0 100.0/100.0
Tile 97.8/99.2 99.5/- 98.2/99.3 96.8/99.9 97.0/98.9 99.3/99.8 99.3/99.8
Wood 100.0/ 100.0 99.7/ - 98.8/99.6 99.7/100.0 99.9/100.0 98.4/99.5 98.6/99.6
Bottle 100.0/100.0 100.0 /- 100.0/100.0 99.7196.5 98.7/99.6 100.0/100.0 99.7/100.0
Cable 94.9/97.1 95.6/— 98.8/99.2 94.8/98.8 89.5/94.6 97.5/98.5 95.2/95.9
Capsule 96.3/99.2 973 /- 94.4/98.7 89.0/97.5 82.8/95.9 90.7/97.9 86.9/97.8
Hazelnut 100.0/100.0 100.0 /- 100.0/100.0 99.5/99.7 98.8/99.2 99.9/99.9 99.8/100.0
Metal nut 100.0/100.0 100.0 /- 99.9/100.0 99.1/96.0 92.9/98.4 96.9/99.3 99.2/99.9
Pill 98.3/99.6 96.3 /- 97.0/99.5 95.7/98.5 77.1/94.4 88.2/91.7 93.7/98.7
Screw 100.0/100.0 97.2/- 94.7/197.9 90.7/99.7 69.9/88.4 76.7/90.6 87.5/96.5
Toothbrush 100.0/100.0 96.7 /- 98.3/99.3 99.7/99.9 71.7/89.3 89.7/95.7 942/97.4
Transistor 100.0/ 100.0 94.5/— 100.0/ 100.0 99.8/99.6 78.2/79.5 99.2/98.7 99.8/98.0
Zipper 100.0/100.0 99.4 /- 99.3/99.8 95.1/99.1 88.4/96.3 99.0/99.7 95.8/99.5
Mean ‘ 99.05/99.64 98.23/99.40 98.61/99.55 97.15/98.97 89.19/95.49 95.25/98.36 96.51/98.83
(b) VisA
Category ‘ UniNet(Ours) ReContrast [10] MambaAD [11] DiAD [12] DeSTSeg [34] SimpleNet [22] UniAD [33]
pebl 100.0/ 100.0 96.5/— 95.4/93.0 88.1/88.7 87.6/83.1 91.6/91.9 92.8/92.7
peb2 99.8/99.8 96.8 /- 94.2/93.7 91.4/91.4 86.5/85.8 92.4/93.3 87.8/87.7
pcb3 92.0/93.6 96.8 /- 93.7/94.1 86.2/87.6 93.7/95.1 89.1/91.1 78.6/78.6
pcb4 100.0/100.0 99.9/- 99.9/99.9 99.6/99.5 97.8/97.8 97.0/97.0 98.8/98.8
macaronil 100.0/ 100.0 97.6/— 91.6/89.8 85.7/85.2 76.6/69.0 85.9/82.5 79.9/79.8
macaroni2 100.0/100.0 89.5/- 81.6/78.0 62.5/57.4 68.9/62.1 68.3/54.3 71.6/71.6
capsules 99.9/100.0 77.71- 91.8/95.0 58.2/69.0 87.1/93.0 74.1/82.8 55.6/55.6
candle 100.0/100.0 96.3 /- 96.8/96.9 92.8/92.0 94.9/94.8 84.1/73.3 94.1/94.0
cashew 96.3/98.0 94.5/- 9457973 91.5/95.7 92.0/96.1 88.2/91.3 92.8/92.8
chewinggum 100.0/ 100.0 98.6/— 97.7/98.9 95.1/99.5 95.8/98.3 96.4/98.2 96.3/96.2
fryum 99.2/99.6 97.3/- 95.2/97.7 89.8/95.0 92.1/96.1 88.4/93.0 83.0/83.0
pipe_fryum 99.5/99.8 99.3/- 98.7/99.3 96.2/98.1 94.1/97.1 90.8/95.5 94.7/94.7
Mean ‘ 98.9/99.2 95.1/96.4 94.3/94.5 86.8/88.3 88.9/89.0 87.2/87.0 91.5/90.8

Table 2. Quantitative results (multi-class) across two industrial datasets. -AUROC and Image-level AP are reported for the multi-class
anomaly detection. Best and second-best results are highlighted in red and blue, respectively.

sidered. For these three polyp datasets, segmentation ac-
curacy was evaluated by comparing the upsampled output
of the student model with its pixel-level ground-truth. For
the Ped2 dataset, we employed the frame-ped strategy [20],
which detects anomalies by measuring the discrepancy be-
tween the student-generated frame and its corresponding
ground-truth.

3. More experimental results

3.1. Results on the industrial datasets

Traditional methods develop separate models for each cate-
gory, known as the one-class anomaly detection setting. Re-
cent efforts [10, 11, 33] have attempted to design a unified
model that can handle multiple categories, i.e., the multi-
class anomaly detection setting. Experimental results for
both settings are reported as follows.

Results under the one-class setting. In addition to the
overall average results across all categories from the MV Tec
AD, BTAD, and MVTec 3D-AD datasets, the average re-
sults for each individual category from these three datasets

are also presented in Table 1. As reported in Table 1(a),
UniNet achieves 100.0% anomaly detection performance
across all categories of the MVTec AD dataset, with the
exception for the grid, tile, and zipper categories. It also
shows comparable segmentation performance. Moreover,
UniNet demonstrates notable anomaly detection and seg-
mentation performance across most categories in the other
two datasets, as illustrated in Table 1(b) and (c). Particu-
larly, on the MVTec 3D-AD dataset, UniNet achieves the
best and significant results across all categories, except for
Cookie category. Finally, the standard deviations of the
three evaluation metrics across three datasets are presented
in Table 1(d).

Results under the multi-class setting. Table 2 shows
the multi-class anomaly detection on the MVTec AD and
VisA [36] datasets. Following [10-12], both I-AUROC and
Image-level AP are reported. UniNet was compared with
state-of-the-art methods reported in [11]: MambaAD [11],
DiAD [12], DeSTSeg [34], SimpleNet [22], and UniAD
[33]. As shown in Table 2(a), UniNet similarly shows
strong performance across most categories, achieving the



highest average [-AUROC and Image-level AP, with a per-
fect score of 100.0%. UniNet outperforms the other meth-
ods and the baseline model by 0.44% and 0.82% in I-
AUROC, as well as by 0.09% and 0.24% in Image-level AP.
Moreover, as reported in Table 2(b), UniNet also achieves
impressive anomaly detection performance on the more
challenging VisA dataset, obtaining the best results in every
category except for the pcb3 category. UniNet markedly
surpasses leading methods, with improvement of 3.8% in
I-AUROC and 2.8% in Image-level AP, respectively.

3.2. Complexity analysis

Table 3 investigates the complexity of UniNet and the base-
line model, ReContrast [10]. By utilizing the same back-
bone as the baseline model, UniNet achieves a compara-
ble model size to ReContrast, while offering a higher in-
ference speed with an improvement of 6.77 FPS. Addition-
ally, UniNet outperforms ReContrast in terms of [-AUROC,
P-AUROC and PRO, with increases of 0.44%, 0.40%, and
0.80%, respectively.

Method ‘ Model Size (GB) | Speed (FPS) T Infer. Time (s) J Metrics

ReContrast 0.141 9.46 15.6
UniNet 0.150 16.23 8.2

99.46/98.41/95.20
99.90 / 98.81 / 96.00

Table 3. Complexity analysis between UniNet and the baseline
model on the MVTec AD dataset. Metrics are I-AUROC / P-
AUROC / PRO. Best results are highlighted in bold.

4. Supplementary ablation studies
4.1. Study on Multi-Scale Embedding Module

To validate the effectiveness of MEM within the bottleneck,
we studied the effect on the kernel size k£ in MEM. The
results are presented in Table 4. Both detection and seg-
mentation performance steadily improve as the large kernel
size increases and the best results can be obtained when us-
ing a combination of (3, 7). Notably, larger kernels lead
to a higher number of model size and decreased inference
speed. As shown in Table 4, the model size of the bottle-
neck (e.g., 0.179 GB and 0.363 GB) can significantly sur-
pass that of the entire framework (see Table 3) prior to re-
parameterization. Similarly, as the kernel size increases, the
inference speed of UniNet progressively decreases. How-
ever, re-parameterization results in a smaller model size and
improved inference speed.

4.2. Study on Domain-Related Feature Selection

To demonstrate that introducing domain-related informa-
tion into the student aids in improving its feature repre-
sentations, we investigated the impact of different selection
strategies on three datasets, as shown in Table 5. Without

k ‘Model Size (GB) | Speed (FPS) 1 Metrics

(3.,3) 0.077+0.00%
(3.,5) 0.118-34.75%
3,7 0.179-57.02%
(3, 11) 0.363-78.80%

16.04+0.00%  99.82/98.16 /95.81
15.86+2.28%  99.88/98.20/95.87
15.33+5.55%  99.90 / 98.81 / 96.00
12.13+25.27% 99.87/98.16/95.75

Table 4. Study on kernel size k in MEM on MVTec AD dataset,
with only the model size of bottleneck reported. Metrics are I-
AUROC / P-AUROC / PRO. The gains after re-parameterization
are highlighted in green, with the best results indicated in bold.

Method ‘ Dataset
‘ MVTec AD APTOS VAD

Fg 99.77/98.76/95.73  99.99/99.63/99.50 99.25/95.88 /95.90
(Fs)T | 99.90/98.81/96.00 100.0/99.60/99.44 99.95/98.60 / 98.60
(Fg)? | 99.81/98.75/95.80 99.99/99.55/99.37 99.87/98.20/98.20

Table 5. Study on different selection strategies for DFS. For the
MVTec AD, the evaluation metrics include I-AUROC / P-AUROC
/ PRO. For the APTOS and VAD datasets, three metrics are re-
ported: I-AUROC / FI / ACC. “Fs”, “(Fs)F”, and “(Fs)*” re-
fer to no feature selection, selecting representative features, and
selecting all available features, respectively. Best results are high-
lighted in bold.

% 7

v 1 I
Pill GT ReContrast +DFS Wood GT

ReContrast +DFS

Figure 1. Segmentation results w/o and w DES on the MVTec AD
dataset.

selecting representative features from the teacher, the stu-
dent faces challenges in understanding target-oriented fea-
ture information, especially on more structurally complex
datasets (e.g., VAD), which negatively affects performance.
Conversely, our method effectively guides the student to se-
lect and learn the most crucial features, yielding promising
results. However, selecting all available information from
the teacher may not be beneficial, as it could include unim-
portant details.

We also investigated the impacts of DFS on the perfor-
mance of ReContrast, as illustrated in Fig. 1. Without DFS,
ReContrast fails to sufficiently learn vital domain-related
features, leading to the loss of subtle details—such as the la-
bel on a pill being mistakenly identified as an anomaly. By
incorporating DFS, ReContrast mitigate this issue by select-
ing key features for learning.

4.3. Additional study on key elements

In addition to industrial datasets, ablation studies on the key
components of UniNet on medical and video domains are
listed in Table 6.



MEM DFS Lsc Ly M | ATPOS Ped2

95.17  95.01

v 9579  95.30
v v 96.52  95.63
v v 96.24 9535
v ' v 97.89  96.09
v v v 97.80  96.20

v v v v | 9955 9740
v v v v v | 1000 9791

Table 6. Ablation studies on the key elements of UniNet on medi-
cal and video datasets, with I-AUROC listed.

T o B |ATPOS Ped2

0.1 0.0 0.03] 99.88 97.72
0.1 01 0.1 | 9985 97.66
0.5 0.05 0.05]| 99.90 97.94
0.5 0.0 0.05]| 9990 97.84
I 01 003] 99.60 97.68
1 001 0.1 99.72  97.60
2 0.01 0.03]| 1000 9791
2 01 005]| 9997 97.80

Table 7. Hyper-parameter analysis on medical and video datasets,
with I-AUROC reported.

4.4. Hyper-parameter sensitivity analysis

The main hyper-parameters include temperature coefficient
T and {«, 8} (controlling the upper and lower limits of the
weight in M). As shown in Table 7, we evaluated different
combinations of 7 (0.1, 0.5, 1, 2), « (0.01, 0.05, 0.1), and
B (0.03, 0.05, 0.1).

5. Qualitative Results

To clearly validate the superior segmentation performance
of UniNet, comprehensive visualization results are pre-
sented across three industrial datasets and three medical
datasets.

5.1. Visualization on industrial datasets

As illustrated in Fig. 2, UniNet effectively segments both
local and global anomalies across texture and object cate-
gories, while maintaining lower anomaly scores in regions
devoid of anomalies.

Results on the BTAD and MTVec 3D-AD datasets are
respectively shown in Fig. 3(a) and (b). For the BTAD
dataset, despite the anomalies closely resembling normal
areas, UniNet exhibits exceptional segmentation perfor-
mance, effectively detecting even the smallest anomalies.
For the MVTec 3D-AD dataset, using only the RGB modal-
ity, UniNet still achieves promising segmentation results, as
shown in Fig. 3(b). However, due to lack of multi-modal
information, UniNet may fail to maintain lower anomaly
scores in some normal regions, such as the Bagel, Cookie,
and Potato categories. This is because the chocolates in the

Cookie category resemble anomalies, such as holes. As are-
sult, relying on a single modality alone makes it challenge
to achieve more accurate segmentation. We will explore
combining other modalities with the RGB modality later.

5.2. Visualization on medical datasets

In addition to industrial datasets, results on three polyp
datasets are visualized in Fig. 3(c). Despite the variabil-
ity in images collected from the intestinal environments of
different patients, UniNet also demonstrates superior seg-
mentation performance in polyps. As illustrated in Fig 3(c),
the segmented results perfectly match the ground-truths,
demonstrating that UniNet is highly resistant to both over-
segmentation and under-segmentation.

6. Discussion

6.1. Limitation

Similar to ReContrast [10] and other unsupervised AD
methods [8, 17, 22], UniNet also experiences training in-
stability for certain categories, with performance fluctuat-
ing when overtraining occurs or random seeds are changed,
particularly in anomaly segmentation performance. How-
ever, thank to weighted decision mechanism M, anomaly
detection performance can hardly be influenced, ensuring
robust anomaly detection results. Besides, although UniNet
has achieved promising results on multimodal datasets like
MVTec 3D-AD, relying solely on 2D data limits its poten-
tial for better anomaly detection performance.

6.2. Future work

We will apply UniNet to other tasks, such as multimodal
anomaly detection or 3D medical image segmentation, by
incorporating other modalities like text or point cloud to
achieve superior performance. Also, the optimization of
loss functions and the model will be investigated to ensure
more stable training.
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