
A Data-Centric Revisit of Pre-Trained Vision Models for Robot Learning

Supplementary Material

Contents

A. Extended Implementation Details 13
A.1. Pre-Training Details 13
A.2. Evaluation Details 13
A.3. Details for Fig. 1 14
A.4. Details for Fig. 4 14

B. Extended Analysis and Discussion 14
B.1. Why Pre-Training on NOC Data? 14
B.2. Why Consider Both Control and Perception? 14
B.3. What Determines the Objectness of SlotMIM? 15
B.4. Fine-grained Slots for Manipulation Tasks? . 15
B.5. Limitation and Future Work 15

C. Extended Experiments 15
C.1. Extended Ablation Study 15
C.2. Comparison with DINOv2 16
C.3. ImageNet Linear Probing and Fine-tuning . . 16
C.4. Scaling Up for ImageNet Tasks 16

A. Extended Implementation Details
A.1. Pre-Training Details

Architecture. We use ViT-B/16 [21] as our backbone. Fol-
lowing common practice in DINO [13], iBOT [80] and
MoCo-v3 [18], the projector g is a 3-layer MLPs with hidden
dimension 2048 and output dimension 256, and the predictor
h is a 2-layer MLPs with hidden dimension 4096 and output
dimension 256.

Augmentation and masking. We use the same augmenta-
tion strategy as in iBOT [80] except not using small local
crops (multi-crop). Avoiding the use of multi-crop saves
significant computational costs in our model, and the model-
learned slots work in a similar role. The masking strategy
follows iBOT [80], with prediction ratio r uniformly sam-
pled from range [0.3− 0.2, 0.3 + 0.2].

Optimization. Most optimization configurations follow
DINO [13] and iBOT [80]. We use AdamW optimizer
with a cosine schedule for the learning rate and weight de-
cay. The learning rate is linearly ramped up during the first
10 epochs to 1.5 × 10−4 scaled with the total batch size:
lr = lrbase × batch size/256, and then decays following the
cosine schedule. The weight decay starts from 0.4 and also
decays following the cosine schedule, to 0.04 when training
ends. We train for 800 epochs on 241K-scale datasets and
400 epochs on 1.28M-scale datasets, with a batch size of
1024 distributed across 8 A100 GPUs. For experiments on

4M-scale datasets, we train 200 epochs.

Hyperparameters. Follow DINO [13] and iBOT [80], the
teacher temperature τt linearly ramps up from 0.04 to 0.07
for the first 30 epochs and remains constant afterwards. The
student temperature τs is fixed at 0.1. The number of proto-
types C is set to 512 for COCO+ and 1024 for other datasets.

A.2. Evaluation Details

Manipulation tasks. Following the setup of [33], we use a
shallow 4-layer MLP with hidden sizes [512, 256, 128] and
ReLU activations as the policy network for behavior cloning.
The 5 Franka Kitchen tasks, 8 Meta-World tasks, and cor-
responding GT demonstrations are also taken from [33].
Following R3M [47] and VC-1 [45], the policy training in-
volves mini-batches of 128 samples, conducted over 20000
steps with the Adam optimizer and a learning rate of 0.001.
The model is evaluated every 1000 steps. All tasks and envi-
ronments use 224×224 RGB images without proprioceptive
input and without image augmentations, and each task uses
only 25 demonstrations for training, which raises higher re-
quirements on the quality of PVMs. For better measurement
of the potential of PVMs, we follow [36] and use attentive
pooling (also known as multihead attention pooling [40]),
which is suggested as a strong and versatile approach [78] as
opposed to the commonly used [CLS] token and provides
better comparisons between frozen PVMs. Following VC-
1 [45], we take the best checkpoint for each run on each task.
For each environment, we report the average performance
over all tasks (3 independent runs each task).

Navigation tasks. The settings on navigation tasks strictly
follows VC-1 [45], which involves object-goal navigation [6]
and image-goal navigation [81]. In both, the agent is initial-
ized at a random location in an unknown 3D environment
and is tasked to find the goal location specified by an image
or object. Both tasks are conducted using Habitat [59] simu-
lator, in which ObjectNav is conducted in the HM3D [57]
environment and ImageNav is conducted in the Gibson [71]
environment. For ObjectNav, the agent is trained for approx-
imately 400M steps with 512 parallel environments. For
ImageNav, the agent is trained for 500M steps with 320 par-
allel environments. Further details can be found in [45] and
omitted here for brevity.

Semantic segmentation on ADE20K. We use UperNet [72]
implemented in MMSegmentation following iBOT [80].
Specifically, we fine-tune for 160k iterations with stochastic
gradient descent, with a batch size of 16 and weight decay
of 0.0005. The learning rate is 0.01 and decays following

13

the poly schedule with power of 0.9 and min lr of 0.0001.

Object detection and instance segmentation on COCO.
COCO object detection and instance segmentation setting
also follows iBOT [80], where the pre-trained model ini-
tialized a Cascade Mask R-CNN [9]. The image scale is
[640, 800] during training and 800 at inference. We fine-
tune all layers end-to-end on COCO [41] train2017 set
with the standard 1× schedule and report AP for boxes and
masks on the val2017 set.

Analytical metrics. Some numeric indicators are considered
to help analyze properties of pre-trained models, e.g., object
discovery ability (objectness of attention maps) measured
by Pascal VOC 2012 object segmentation quality. The Jac-
card index measures the overlap between predicted mask
P and the ground truth mask G as J(P,G) = G∩P

G∪P . Fol-
lowing [8, 48], the attention maps of DINO and iBOT are
computed between the [CLS] token and patch tokens in the
last layer, and the attention maps of SlotMIM are computed
between the prototypes and projected patch tokens. For each
object of interest, the attention head/prototype producing the
best Jaccard index is selected. Besides, for the ablation stud-
ies, we also report k-NN ImageNet classification (k = 20)
accuracy following DINO [13]. Additionally, we maintain a
running mean of the average number of active (assigned to
at least one patch) slots K in an image during training.

A.3. Details for Fig. 1

(a) BC performance regarding dataset and model. Fig. 1a
is a grouped version of Franka Kitchen and Meta-World
results in Fig. 2 in the main paper. For each grid, we report
the average performance over all manipulation tasks given
a PVM pre-trained on a specific dataset (by row) using a
specific model (by column).

(b) Correlation between objectness and BC performance.
Fig. 1b is a joined view between the average manipulation
performance (first two subfigures) and VOC object segmen-
tation performance (third subfigure) in Fig. 2 in the main
paper. It is presented as a scatter plot to show the (Pearson’s)
correlation between the two metrics.

(d) Visualization of attention maps. Fig. 1b and Fig. 1d
show examples of the attention maps of DINO and Slot-
MIM, respectively. All models are pre-trained on 241K-scale
datasets for 800 epochs. For DINO, we follow the official
implementation [13] to take the attention maps between the
[CLS] token and patch tokens in the last layer, and show
the best attention head. For SlotMIM, we take the attention
maps (prototype assignments) between projected patch to-
kens and the “cat” prototype—the prototype with the highest
cosine similarity with “cat” segments.

A.4. Details for Fig. 4

(a) Visualization of attention maps. All attention maps
in Fig. 4a are computed in the same manner as SlotMIM
in Fig. 1d—between the prototypes and projected patch to-
kens. All models are pre-trained on COCO+ (scene-centric)
for 800 epochs. For iBOT, we trained two variants—one
with 8192 prototypes (dimension of the last layer in the DI-
NOHead in implementation) as default, and one with 512
prototypes. In the visualization, each prototype is assigned a
random color.

(b) Visualization of segmentation consistency. Fig. 4b
shows the segments assigned to each prototype following
the implementation of [69]. We first obtain all segments
(prototype assignments) on COCO val2017 set, pool them
to slots, and then retrieve the nearest-neighbor slots for each
prototype. Then for each selected prototype, we visualize
the segments of the top-5 similar slots.

B. Extended Analysis and Discussion
B.1. Why Pre-Training on NOC Data?
Self-supervised pre-training have benefited numerous down-
stream tasks, with a key advantage in its ability to learn
representations from unlabeled data, eliminating the need for
human annotations and making it easier to scale up training
datasets. Despite this advantage in utilizing diverse types of
data, most research has focused on (single-)object-centric
datasets like ImageNet for model development, leaving large
volumes of non-object-centric (NOC) data, such as Open
Images [39], SA-1B [38], LAION [61], and Ego4D [24],
underutilized. However, many primary application domains
of self-supervised learning—such as robot learning (manipu-
lation, navigation, etc.), or traditional perception tasks like
object detection and image segmentation—often require han-
dling NOC data. This motivates us to explore the potential of
NOC data for self-supervised learning, which could bridge
the data-domain gap between self-supervised learning and
real-world applications, and is rich in information, offering
new opportunities for data scaling.

B.2. Why Consider Both Control and Perception?
The latest development of robot learning has witnessed a
shift towards mulit-modal generalist models that are capa-
ble of handling diverse robot tasks, in which both control
and perception are indispensable. This involves integrating
PVMs (e.g., CLIP [54], T5 [56], and DINOv2 [52]) as multi-
modal encoders [7, 15, 37, 50, 70, 82] or explicitly utilizing
foundation models (e.g., OWL-ViT [46], SAM [38], and
GPT-4V [51]) as tools [23, 32, 34, 35, 49]. It is also shown
that improvements in perception can lead to policies that gen-
eralize better to unseen environments using less data [64]. In
accordance with this trend, recent research in PVM for robot

C k-NN ADE Jacc K

256 45.3 49.1 42.2 7.8
512 46.2 49.1 43.9 9.4
1024 45.6 48.4 42.8 10.8

(a) Number of prototypes

k-NN ADE Jacc K

0.3 46.2 49.1 43.9 9.4
0.4 45.8 48.6 45.0 8.1
0.5 44.3 48.2 45.7 7.1

(b) Mask ratio (±0.2)

τt k-NN ADE Jacc K

0.04→0.07 46.2 49.1 43.9 9.4
0.07 45.8 48.6 42.1 8.1
0.07→0.04 45.5 49.1 42.6 7.1

(c) Teacer temp. schedule

Type k-NN ADE Jacc K

center 46.2 49.1 43.9 9.4
SH 45.1 49.3 40.8 15.2

(d) Patch loss

Table 5. Ablation studies on hyperparameters. Default values are marked with a cyan background.

learning has also started to consider more diverse evaluation
protocols [36, 45, 77]. Serving as the visual cortex of a mod-
ern robot, we believe that a good PVM should enhance both
perception and control abilities.

B.3. What Determines the Objectness of SlotMIM?
We consider two quantitative metrics for the objectness of
SlotMIM: 1) the Jaccard index between the attention maps
and the ground truth object masks in Pascal VOC; and 2) the
average number of active slots K in an image during training.
The former measures the alignment of the attention maps to
objects, and the latter roughly measures the granularity of
the concepts represented by the attention maps—the more
fine-grained the concepts are, the more parts (slots) each
image is segmented into.

In the main paper, we have shown that both pre-training
dataset and model hyper-parameters can affect the object-
ness of SlotMIM. Concerning the dataset, object-centric data
leads to better alignment to common objects, scene-centric
data and web-crawled data lead to slightly worse segmen-
tation quality and similar-level granularity, and ego-centric
data leads to very fine-grained segmentation. Concerning
the model hyper-parameters, we will show in Appendix C.1
that there are multiple factors can affect the segmentation
quality and granularity.

B.4. Fine-grained Slots for Manipulation Tasks?
In the main paper, we have shown that while scaling up non-
ego-centric data for SlotMIM can improve segmentation
quality and navigation/perception performance, manipula-
tion performance drops due to over-compression. We are cu-
rious if learning fine-grained slots/concepts can improve the
transferability of SlotMIM pre-trained on non-ego-centric
data to manipulation tasks. To this end, we consider pre-
training on COCO+ and conduct an ablation study on the
number of prototypes and the use of Sinkhorn-Knopp algo-
rithm for patch-level loss. The results are shown in Tab. 6.

Increasing the number of prototypes C loosens the con-
straints on the compactness of the slots, and the use of SH
encourages more diverse utilization of the prototypes, both
leading to more fine-grained slots. The results show that both
methods can improve the success rate on manipulation tasks
(averaged over all tasks). Explorations in this direction may
resolve the inverse-scaling phenomenon on non-ego-centric

Model Dataset #Proto. SH Jacc K Success (%)

SlotMIM COCO+ 256 ✗ 42.2 7.8 74.3
SlotMIM COCO+ 512 ✗ 43.9 9.4 74.8
SlotMIM COCO+ 512 ✓ 40.8 15.2 76.8
SlotMIM COCO+ 1024 ✗ 42.8 10.8 78.4

Table 6. Can fine-grained slots improve manipulation perfor-
mance? We consider increasing the number of prototypes C and
using SH for patch-level loss. Both ways enforce the emergence of
fine-grained slots and improve success rate on manipulation tasks.

data in the main paper, which we leave for future work.

B.5. Limitation and Future Work

This work explores the interaction between pre-training data
and algorithms for robotic manipulation, navigation, and
perception-oriented tasks. With these of interest, it requires
extremely intensive computation to provide a complete com-
parison of all existing PVMs, scale pre-training data to
larger scales, and evaluate more complex robotic tasks (e.g.,
language-conditioned manipulation and real-world tasks).
The results present in the paper is thus a result of trading-
off. Will SlotMIM work well for generalist robotic mod-
els like Octo [50] and OpenVLA [37]? Will the next-gen
PVM for robotics be pre-trained on a mixture of SA-1B [38],
Ego4D [24], and/or LAION-400M [60], LVD-142M [52]?
Will the preceptive module bestly to be supervised by self-
supervision, language, action trajectories, or a mixture of
them? There are yet much to explore, but still, we believe
that the insights and methods proposed in this work can serve
as a stepping stone for future research in this direction.

C. Extended Experiments

C.1. Extended Ablation Study

In Tab. 5 we present ablations on some numeric design
choices. Generally speaking, a smaller number of prototypes,
a higher mask ratio, and the use of centering [13] instead of
Sinkhorn-Knopp algorithm [12] encourage the network to
discover more holistic concepts/objects, while the opposite
discovers more fine-grained ones. Optimal representation is
highly related to object discovery quality.

Method Dataset Scale Kitchen MW ObjNav ImgNav

MVP EgoSoup 4.6M 49.7 70.1 51.2 64.7
VC-1 Ego4D+MNI 5.6M 58.1 73.3 55.4 67.9
DINOv2 LVD 142M 64.0 38.8 65.8 59.1
SlotMIM Ego4D 1.28M 86.0 84.2 48.4 65.4
SlotMIM DetSoup 4M 46.7 75.1 62.0 69.8

Table 7. Comparison with DINOv2. SlotMIM achieves compa-
rable or better performance on robot tasks compared to DINOv2,
especially on manipulation tasks. (DINOv2 is ViT-B/14, while
other models are ViT-B/16)

C.2. Comparison with DINOv2

One might argue that the state-of-the-art self-supervised
model, DINOv2 [52], already utilizes NOC data with a vi-
sion transformer backbone. However, its success heavily
depends on data curation techniques that leverage the object-
centric ImageNet dataset to select neighboring data from
web-crawled data, keeping its data distribution closely tied
to object-centric approaches. We also evaluate DINOv2 on
the robot learning tasks considered in this paper. As shown
in Tab. 7, DINOv2 does not perform as well on these tasks,
possibly also due to over-compression of the representations
for manipulation tasks.

C.3. ImageNet Linear Probing and Fine-tuning

Setting. We follow MAE [29] for details on ImageNet eval-
uations. For linear probing, we insert an extra BatchNorm
layer without affine transformation between the features and
the linear classifier. We train with batch size 4096, initial
learning rate 0.1, and optimize using SGD for 90 epochs.
We sweep between [CLS] token and average pooling and
report the best results of pre-trained models. For fine-tuning,
we train a linear classifier on frozen features for 100 epochs
using SGD with momentum 0.9, batch size 1024, and initial
learning rate 1e-3 with cosine decay. We follow MAE [29]
to adopt average pooling. For both settings, accuracy is
evaluated on a single 224×224 crop.

We first evaluate models pre-trained on 241K-scale
datasets, and show that NOC data can be good learning
resources if used properly. The results are present in Fig. 8.
Overall, SlotMIM achieves the best performance across clas-
sification and segmentation tasks, no matter learning from
object-centric data or not. Below, we discuss some other
interesting findings.

Features learned from NOC data can be linear separat-
able on ImageNet. From Fig. 8 (left), our models trained
on COCO and CC achieve similarly good linear probing
performance on ImageNet with best prior ImageNet-trained
methods. As a clear contrast, all previous methods trained
on NOC datasets (COCO, CC, and Ego4D) fall behind the

40 60
INet Lin. Probe (Top-1 Acc.)

BEiT

SplitMask

MAE

DINO

iBOT

SlotMIM
81 82 83
INet Finetune (Top-1 Acc.)

BEiT

SplitMask

MAE

DINO

iBOT

SlotMIM

INet-241K COCO+ CC-241K Ego-241K

Figure 8. Results on ImageNet tasks. SlotMIM consistently
outperforms prior arts whether pre-trained on object-centric data
or not. Notably, when trained on COCO+, it transfers better than
most ImageNet models despite the domain gap.

best ImageNet counterpart.

NOC data can be worth more than ImageNet for Im-
ageNet. As shown in Fig. 8 (right), under ImageNet fine-
tuning setting, the top-3 methods (BEiT, SplitMask, and Slot-
MIM) have the best performance when trained on COCO+
instead of ImageNet. For MAE and DINO, training on CC
also transfers better than ImageNet. Note that this is uncom-
mon given the domain gap between NOC pre-training data
and OC downstream task, demonstrating that NOC data are
information-rich learning resources.

C.4. Scaling Up for ImageNet Tasks

241K 1.28M 4M 12M
Scale of Pre-train Data

50

55

60

65

70

75

80

To
p-

1
Ac

c.
 (%

)

INet-22K

INet Lin. Probe

241K 1.28M 4M 12M
Scale of Pre-train Data

82.0

82.5

83.0

To
p-

1
Ac

c.
 (%

)

INet-22K

INet Finetune

Method
MAE
DINO
iBOT
SlotMIM
Data
Object
Scene
Web

Figure 9. Scaling on different data sources. We scale up object-
centric, scene-centric, and web-crawled data, and highlight the
best (model, data) combinations. Our method learns strong and
transferable representations with significant data efficiency and
continues to improve with more data.

Superior data efficiency allows us to explore larger-scale
pre-training data. In Fig. 9, we show that SlotMIM achieves
strong performance with remarkable data efficiency.

Comparable or better performance with small data scale.
As shown in Figure 9, SlotMIM achieves comparable or su-

perior performance to other methods using significantly less
data. Our INet-241K model for ImageNet linear probing, and
COCO+/INet-241K models for ImageNet fine-tuning out-
perform or match most models trained on 1.28M ImageNet
images across various tasks. This remarkable data efficiency
demonstrates our approach’s effectiveness in extracting rich,
transferable features from limited data.

NOC pre-training rivals ImageNet pre-training for Ima-
geNet. Interestingly, we observe that pre-training on NOC
datasets like OpenImages-1.28M can lead to performance
better than pre-training on ImageNet for the ImageNet clas-
sification task (fine-tuning setting). When scaled up to 4M
scale, this trend becomes more pronounced. This aligns
with the trend in Fig. 8 that NOC data can provide more
information-rich features, which can be better-utilized by
models like SlotMIM.

NOC data also possesses stronger scalability. We ex-
tend experiments to 4M scale by combining ImageNet [20],
COCO+ [41], OpenImages [39], Objects365 [63], and
LVIS [25]. Compared with previous efforts on scaling up
with ImageNet-22K [58] (12M images), the performance of
SlotMIM models continues to grow and surpasses them with
3× less data. This suggests that NOC data can be a more
scalable learning resource.

