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6. ETH3D Leaderboard
At the time of submission, our fine-tuned model ranks
1st on the ETH3D leaderboard, significantly outperforming
both published and unpublished works. The screenshot is
shown in Fig. 6.

7. Middlebury Leaderboard
At the time of submission, our fine-tuned model ranks 1st
on the Middlebury leaderboard, significantly outperforming
both published and unpublished works. The screenshot is
shown in Fig. 8.

8. More Ablation Study on Synthetic Data

Effects of Self-Curation. We study the effectiveness of
self-curation pipeline introduced in Sec. 3.5. When dis-
abling the self-curation while keeping the same data size,
the synthetic dataset involves ambiguous samples that con-
fuse the learning process, leading to slight performance
drop when evaluated on Middlebury [51] dataset.

Variation BP2

W/ self-curation 1.15
W/o self-curation 1.27

Table 8. Effectiveness of self-curation pipeline when generating synthetic
data.

Effects of FSD for Other Methods. We train represen-
tative works IGEV and Selective-IGEV on FSD only. As
shown in the table below, for both methods, our proposed
FSD effectively boosts the performance compared to the
commonly used Scene Flow dataset.

Methods Train data
Middlebury ETH3D KITTI-12 KITTI-15

BP-2 BP-1 D1 D1

IGEV Scene Flow 8.8 4.0 5.2 5.7
IGEV FSD 7.8 3.5 3.2 4.7
Selective-IGEV Scene Flow 9.2 5.7 4.5 5.6
Selective-IGEV FSD 7.9 3.5 3.0 4.4

Table 9. Effects of FSD for other methods.

9. Results on Translucent Objects
We evaluate on Booster [48] (half resolution), which is a
challenging dataset consisting of specular and transparent
objects. We compare with the most competitive methods
from Fig. 5 (main paper) in the zero-shot setting. The quan-
titative and qualitative results are shown below.

Methods
Half

BP1 BP-2 BP-3 EPE

Selective-IGEV 23.8 15.0 12.0 6.6
IGEV 30.8 22.3 19.0 22.7
Ours 19.0 9.6 6.7 2.2

IGEV

Selective-IGEV Ours

10. More Results on Middlebury Dataset
We compare with competitive methods that released their
public weights in zero-shot on Middlebury, shown in below
table. Since NMRF [22] did not report their evaluated Mid-
dlebury resolution, we rerun their released weights on all
resolutions. At full resolution, maximum disparity 320 is
used for FoundationStereo. Across all resolutions, ours sig-
nificantly outperforms baselines. We also report the peak
memory usage and running time averaged across the dataset
on the same hardware, particularly single GPU 3090. On
half and quarter resolutions, our peak memory occurs at
STA module. On full resolution, it occurs at DT module.
Despite the speed limitation which is not the focus when de-
veloping this work, ours can successfully run on a desktop
GPU. Pruning or distillation remains an interesting future
work to improve speed and memory footprint.

Methods
Full Half Quarter

BP-2
peak

mem (G) time (s) BP-2
peak

mem (G) time (s) BP-2
peak

mem (G) time (s)

Selective-
IGEV[61] 12.9 6.9 2.52 9.2 1.7 0.72 7.0 0.5 0.25

IGEV[33] 13.1 6.3 2.06 8.8 1.6 0.53 6.4 0.5 0.18
IGEV++[66] 12.7 13.1 2.12 7.8 3.4 0.50 6.3 0.9 0.15
NMRF[20] 35.3 8.1 0.95 10.9 1.8 0.20 5.0 0.5 0.05

Ours 4.8 18.5 8.14 1.1 10.5 2.97 1.3 2.3 0.55

Table 10. Results on varying resolutions in Middlebury.

11. More Details of Synthetic Data Generation

Tooling and Assets. The dataset generation is built on
NVIDIA Omniverse. We use RTX path-tracing with 32
to 128 samples per pixel for high-fidelity photorealistic
rendering. The data generation is performed across 48
NVIDIA A40 GPUs for 10 days. There are more than 5K
object assets collected from varying sources including artist
designs and 3D scanning with high-frequency geometry de-
tails. Object assets are divided into the groups of: furniture,
open containers, vehicles, robots, floor tape, free-standing
walls, stairs, plants, forklifts, dynamically animated digi-
tal humans, other obstacles and distractors. Each group is
defined with a separate randomization range for sampling
locations, scales and appearances. In addition, we curated
12 large scene models (Fig. 7), 16 skybox images, more

https://www.eth3d.net/low_res_two_view
https://vision.middlebury.edu/stereo/eval3/


Figure 6. ETH3D leaderboard screenshot. Our fine-tuned foundation model (red box) ranks 1st at the time of submission.

Figure 7. Examples scene models involving factory, hospital, wood attic, office, grocery store and warehouse. In the third column, we demonstrate an
example of metallic material randomization being applied to augment scene diversity. The last column shows comparison of a warehouse between the real
(bottom) and our simulated digital twin (top) in high fidelity.

than 150 materials, and 400 textures for tiled wrapping on
object geometries for appearance augmentation. These tex-
tures are obtained from real-world photos and procedurally
generated random patterns.

Camera Configuration. For each data sample, we first ran-
domly sample the stereo baseline camera focal length to di-
versify the coverage of field-of-views and disparity distri-
butions. Next, objects are spawned into the scene in two
different methods to randomize the scene configuration: 1)
camera is spawned in a random pose, and objects are added

relative to the camera at random locations; 2) objects are
spawned near a random location, and the camera is spawned
nearby and oriented to the center of mass of the object clut-
ter.

Layout Configuration. We generate layouts in two kinds
of styles: chaotic and realistic. Such combination of the
more realistic structured layouts with the more randomized
setups with flying objects has been shown to benefit sim-to-
real generalization [62]. Specifically, chaotic-style scenes
involve large number of flying distractors and simple scene
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Figure 8. Middlebury leaderboard screenshot. Our fine-tuned foundation model (red box) ranks 1st at the time of submission.
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Figure 9. Disparity distribution in our proposed FSD.

layouts which consists of infinitely far skybox and a back-
ground plane. The lighting and object appearances (texture
and material) are highly randomized. The realistic-style
data uses indoor and outdoor scene models where the cam-
era is restricted to locate at predefined areas. Object assets
are dropped and applied with physical properties for colli-
sion. The simulation is performed randomly between 0.25
to 2 seconds to create physically realistic layouts with no
penetration, involving both settled and falling objects. Ma-
terials and scales native to object assets are maintained and

more natural lighting is applied. Among the realistic-style
data, we further divide the scenes into three types which de-
termine what categories of objects are selected to compose
the scene for more consistent semantics:
• Navigation - camera poses are often in parallel to the

ground and objects are often spawned further away. Ob-
jects such as free-standing walls, furniture, and digital
humans are sampled with higher probability.

• Driving - camera is often in parallel to the ground above
the ground and objects are often spawned further away.



Objects such as vehicles, digital humans, poles, signs and
speed bumps are sampled with higher probability.

• Manipulation - camera is oriented to face front or down-
ward as in ego-centric views and objects are often
spawned in closer range to resemble interaction scenar-
ios. Objects such as household or grocery items, open
containers, robotic arms are sampled with higher proba-
bility.

Lighting Configuration. Light types include global illu-
mination, directed sky rays, lights baked-into 3D scanned
assets, and light spheres which add dynamic lighting when
spawned near to surfaces. Light colors, intensities and di-
rections are randomized. Lighting vibes such as daytime,
dusk and night are included within the random sampling
ranges.
Disparity Distribution. Fig. 9 shows the disparity distribu-
tion of our FSD dataset.
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