
Ouroboros3D: Image-to-3D Generation via 3D-aware Recursive Diffusion

Supplementary Material

1. Supplementary
1.1. Video Model Fine-tuning
Based on the approach outlined in SVD, the generation pro-
cess employs the EDM framework. Let pdata(x0) represent
the video data distribution, and p(x;σ) be the distribution
obtained by adding Gaussian noise with variance σ2 to the
data. For sufficiently large σmax, p(x;σ2

max) approximates
a normal distribution N (0, σ2

max). Diffusion models (DMs)
leverage this property and begin with high variance Gaussian
noise, xM ∼ N (0, σ2

max), and then iteratively denoise the
data until reaching σ0 = 0.

In practice, this iterative refinement process can be imple-
mented through the numerical simulation of the Probability
Flow ordinary differential equation (ODE):

dx = −σ̇(t)σ(t)∇x log p(x;σ(t)) dt (1)

where ∇x log p((x;σ) is called as score function.
DM training is to learn a model sθ(x;σ) to approximate

the score function ∇x log p((x;σ). The model can be pa-
rameterized as:

∇x log p((x;σ) ≈ sθ((x;σ) =
Dθ(x;σ)− x

σ2
, (2)

where Dθ is a learnable denoiser that aims to predict ground
truth x0.

The denoiser Dθ is trained via denoising score matching
(DSM):

Ex0∼pdata(x0),(σ,n)∼p(σ,n)

[
λσ∥Dθ(x0 + n;σ)− x0∥22

]
,
(3)

where p(σ, n) = p(σ)N (n; 0, σ2), p(σ) is a distribution
over noise levels σ, λσ is a weighting function. The learnable
denoiser Dθ is parameterized as:

Dθ(x;σ) = cskip(σ)x+ cout(σ)Fθ(cin(σ)x; cnoise(σ)), (4)

where Fθ is the network to be trained.
We sample log σ ∼ N (Pmean, P

2
std), with Pmean = 1.0

and Pstd = 1.6. Then we obtain all the parameters as follows:

cin =
1√

σ2 + 1
(5)

cout =
−σ√
σ2 + 1

(6)

cskip(σ) =
1

σ2 + 1
(7)

cnoise(σ) = 0.25 log σ (8)

λ(σ) =
1 + σ2

σ2
(9)

We fine-tune the network backbone Fθ on multi-view
images of size 512× 512. During training, for each instance
in the dataset, we uniformly sample 8 views and choose the
first view as the input view. view images of size 512× 512.

1.2. Canonical Coordinates Map

Figure 1. The projection process of coordinates map.

For control networks of image diffusion models, the con-
ditional maps like depth maps need to be normalized to [0,
1], typically using the formula: (p−pmean)/(pmax−pmin).
For multi-view generation, each view performs a normalize
operation on itself, which results in a scale ambiguity. At the
same time, the depth map is relative to a certain view, and
the correlation between the depth values is not significant
across views.

To avoid the above issues caused by self-normalization,
we use canonical coordinate maps (CCM). Coordinate maps
transform the depth value d to a common world coordinate
system using the camera’s intrinsic and extrinsic parameters,
represented as (X,Y, Z). The transformation formula is:

X
Y
Z

 = K−1 ·

u
v
1

 · d
where (u, v) are the pixel coordinates, d is the corresponding
depth value, and K is the camera intrinsic matrix. Then the
coordinate values of all views will be multiplied by a global
scale and added an offset value to convert to the range of
0 to 1. This representation makes the correlation between
different views more significant and is helpful for multi-view
generation.



1.3. Algorithm

Algorithm 1 Training
Input: x, cond_image, cameras, timestep
Output: loss
// Returns the loss on a training example x. Details about

EDM are omitted here.
begin

noise← Sample from Normal Distribution
noisy_x← Add_Noise(x, noise, timestep)
pred_x← F (noisy_x, cond_image, timestep, cameras)
pred_i← VAE_Decoder(pred_x)
self_cond← G(pred_i, cameras, timestep)
if Random_Uniform(0, 1) > 0.5 then

pred_x ← F(noisy_x, cond_image, timestep, cam-
eras, self_cond)

end
loss_mv←MSE_Loss(pred_x, x)
loss_recon ← MSE_Loss(self_cond, x) +

LPIPS_Loss(self_cond, x)
loss← loss_mv + loss_recon
return loss

end

Algorithm 2 Inference
Input: cond_image, cameras, timesteps
Output: images, 3d_model
// Generate multi-view images and 3D model from a condi-

tion image.
begin

self_cond← None
x_t← Sample from Normal Distribution
foreach timestep in timesteps do

pred_x ← F (x_t, cond_image, timestep, cameras,
self_cond)

pred_i← VAE_Decoder(pred_x)
self_cond← G(pred_i, cameras, timestep)

end
return pred_i, self_cond

end

1.4. 3D-aware Feedback
Fig. 2 and Tab. 1 provide a detailed illustration of the feed-
back injection netwrok. We use two networks to inject the
coordinates map and RGB texture map feedback into the
score function. Each network consists of four feature ex-
traction blocks and three downsample blocks to adjust the
feature resolution. The reconstruction coordinates map and
RGB texture map initially have a resolution of 512 × 512.
We employ the pixel unshuffle operation to downsample
these maps to 64× 64.

3x3 Conv

ReLU

3x3 Conv

+

Figure 2. Architec-
ture of the residual
block used in the
feedback stage.

Table 1. The detailed structure of all layers in
the feedback injection network.

Input inp ∈ R3×512×512

PixelUnshuffle 192× 64× 64
ResBlock ×3 320× 64× 64
ResBlock ×3 640× 32× 32
ResBlock ×3 1280× 16× 16
ResBlock ×3 1280× 8× 8

At each scale, three residual blocks are used to ex-
tract the multi-scale feedback features, denoted as FP =
{F 1

p , F
2
p , F

3
p , F

4
p } and FT = {F 1

t , F
2
t , F

3
t , F

4
t } for the co-

ordinates map and RGB texture map, respectively. These
feedback features match the intermediate features Fenc =
{F 1

enc, F
2
enc, F

3
enc, F

4
enc} in the encoder of the UNet denoiser.

The feedback features FP and FT are added to the intermedi-
ate features Fenc at each scale as described by the following
equations:

Fp = F0(P ) (10)

Ft = F1(T ) (11)

Fi
enc = Fi

enc + Fi
p + Fi

t, i ∈ {1, 2, 3, 4} (12)

where P represents the coordinates map feedback input,
and T represents the RGB texture feedback input. F0 andF1

denote the functions of the feedback inject network applied
to the coordinates map and RGB texture map, respectively.

Figure 3. Visualization of the reconstruction results at different de-
noising steps. The process initially generates floaters and distorted
geometries, but progressively refines them into cleaner representa-
tions. Through feedback mechanisms, the model optimizes shape
and texture features in the early stages

1.5. visualization of denoising steps
We visualize the reconstruction process at different denois-
ing steps in Fig. 3. Early stages show floating artifacts and
distorted geometries due to multi-view inconsistency. As de-
noising progresses, our recursive diffusion method gradually
refines both the geometric accuracy and material properties



of the reconstruction. By comparing the visual results, we
observed that the 3D feedback mechanism achieved superior
performance compared to the no-feedback condition.


	Supplementary
	Video Model Fine-tuning
	Canonical Coordinates Map
	Algorithm
	3D-aware Feedback
	visualization of denoising steps


