Scaling Mesh Generation via Compressive Tokenization

Supplementary Material

A. Data Curation

Effective data filtering. For meshes with the same faces,
their tokenized sequence length may differ due to the patch
aggregation and block compression of BPT. We design an
effective data-filtering strategy to maximize the utilization
of our training data. Specifically, we filter meshes with
their sequence length lower than the context window of the
Transformer (i.e., 9600). Figure 1 shows that almost all
meshes under 5k faces are used, and around 58% of meshes
with more than 5k faces are further utilized. This strategy
allows the utilization of some complicated meshes and im-
proves the model’s robustness and performance.

601 Training Data

Filtered Data
50 |

404

30

20

Data Amount (x10k)

10

0-1k 1k-2k 2k-3k 3k-4k 4k-5k 5k-6k 6k-Tk 7k-8k
Mesh with Different Faces

Figure 1. Effective utilization of training data. Almost all
meshes under 5k faces are used, and around 58% of meshes with
more than 5k faces are utilized further.

Two-stage training. Objaverse-XL contains many low-
poly data with simple geometries, such as CAD meshes.
In the initial stage of training, the model may benefit from
these meshes to learn the geometry prior. However, their
topology is typically different from human-crafted meshes
and may prevent the model from learning the delicate topol-
ogy. Therefore, we leverage a two-stage training strategy
to trade off the generalizability and topology quality. The
model is first pretreated on the large-scale data with around
1.5M meshes and then further fine-tuned on 0.3M high-
quality meshes without simple geometry.

Testset Distribution. We build testset with 651 shapes in
Table 1, generated by 3D diffusion models and remeshed to
around 100k faces and 50k vertices.

Category Amount Category Amount
Human 119 Structure 119
Product 99 Animal 81

Style 62 Geometry 51

Weapons 45 Transportation 44

Others 31 Total 651

Table 1. The distribution of the test set.

B. Model Architecture

As shown in Figure 2, the overall architecture of our model
follows Michelangelo. As shown in Figure 2, we first train
an auto-regressive transformer to generate meshes condi-
tioned on point-cloud features extracted from the point-
cloud encoder. Then, we train an additional diffusion model
to generate point-cloud features conditioned on images.

C. Additional Results

Finer Discretization of BPT. For fair comparison, BPT
follows the 7-bit discretization of previous works. How-
ever, BPT can be easily extended to finer discretization by
increasing vocabulary, similar to modern LLMs (e.g., 128k
of LLAMA3). We show the 9-bit discretization (|B| = 16,
|O| = 32) in Figure 3 and found that the finer discretization
contributes to better details and the smoother surface.

Compression Ratio of Different BPT Settings. The
compression ratio is empirically calculated in our training
dataset. With smaller | B|, vertices are easier to fall into the
same block and be merged, thus the compression ratio is
lower as shown in Table 2.

(B, [0 “4,32) (&, 16) (16,8
Compression Ratio| 0.2456 0.2594 0.2802

Table 2. The compression ratios with different BPT settings

Contribution of each component. We combine block-
wise indexing (BI) with AMT to further show the effective-
ness of patch aggregation in Table 4. Due to the long-range
dependency on AMT in Figure 4, the results with BI are
even worse than those with vanilla AMT.

Tokenization Speed. All tokenization methods can seri-
alize meshes in near real-time in Table 5.

Next Mesh Token p,

\
1
1
1
Diffusion Model '
““““““““““““““ . |
1 1
1 1
1 : 1
Point Cloud ,‘ [Self Attention] :'
. Encoder Se--—------------ ‘SN S=E
Point Cloud [Embedding] Generated Mesh

Previous Mesh Tokens p1.,—1

Figure 2. Model architecture for conditional mesh generation. First, we leverage an auto-regressive transformer to generate meshes
conditioned on point-cloud features via cross-attention layers. Next, we train an additional diffusion model to generate point-cloud features
based on images, enabling image-to-mesh generation.

Metrics ECD(1073)] NCt #V #F VRatio(1072) FRatio(102)
MeshAnythingv1 6.09 0.63 416 713 0.83 0.71
MeshAnythingv2 4.49 0.64 1100 1943 2.20 1.94

BPT 3.84 0.85 1207 2369 473 2.36

Table 3. Additional metrics for quantitative evaluation.

Serilization Order. For generic datasets, the sequence or-
der only slightly affects the generation performance. We
tried several orders in Table 6 and found that the z-y-x or-
der (bottom-up order) performs best.

7-bit 9-bit

Sequence Order Z-y-X X-y-Z = y-Z-X

Hausdorff Distance] 0.166 0.199 0.210
Chamfer Distance| 0.094 0.104 0.109

Figure 3. Results of 7-bit and 9-bit discretization of BPT

Method BPT AMT AMT w/BI Table 6. Ablation on sequence face order

Hausdorff Distance| 0.166 0.265 0.605
Chamfer Distance| 0.094 0.114 0.291

Point-cloud Number Ablation. We try different points
in Table 7 and found 4096 points achieve the best perfor-
mance. With fewer points, details are hard to preserve.
Method AMT Edgerunner BPT With more points, the model tends to produce smaller faces
for more details, making it easier to generate incomplete
meshes.

Table 4. Ablation on block-wise indexing

Speed (s/mesh) 0.028 0.014 0.026

Table 5. Average tokenization time for a mesh
Point-cloud Amount 2048 4096 8192

Hausdorff Distance] 0.184 0.166 0.202
Chamfer Distance] 0.102 0.094 0.107

Additional Metrics. We extend Table 2 in the main paper
with more metrics in Table 3. Note that meshes generated
by Meshanything v1/v2 are mainly incomplete, leading to a
smaller number of faces and vertices.

Table 7. Ablation on the number of points

o
X
YRge9e
cese e

Dense Mesh Ours Remesh (5k faces) Remesh (1k faces)

Vo
X

Vo
E

Figure 4. Comparison with remeshing. Our method can generate appropriate topology from dense meshes, while remesh algorithms
fundamentally fail to capture models’ geometry and produce poor topology.

Textured Mesh Generation. We synthesize texture with
an off-the-shelf texture model in Figure 5.

%*ﬂ\ *;)z\j %ﬁ

Figure 5. Textured Mesh Generation.

Comparison with remesh. Compared with remeshing al-
gorithms, our method can generate appropriate topology
from dense meshes, while remesh algorithms fundamen-
tally fail to capture models’ geometry and produce poor
topology. As shown in Figure 4, the meshes generated by
our model are at the product-ready level.

	Data Curation
	Model Architecture
	Additional Results

