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We provide additional supporting experiments and vi-

sualizations in this supplementary material. Specifically,

Section A presents further empirical evidence for the exis-

tence of Early-Bird (EB) tickets in diffusion models across

four additional dataset-model pairs. Section B offers ad-

ditional empirical evidence of Timestep-Aware Early-Bird

(TA-EB) tickets using four additional dataset-model pairs.

Section C supplies an ablation study to analyze the impact

of varying the number of iterations within a pseudo-epoch.

Section D showcases additional image generations from the

CelebA [4] dataset, further illustrating the qualitative per-

formance of our proposed methods. Section E presents

additional experimental results using the Diffusion Trans-

former (DiT [5]) architecture, demonstrating the versatility

of our approach when applied to this widely-used architec-

ture. Section F provides experimental results for different

number of timestep regions, showcasing that our method is

robust to number or regions. Section G presents an ablation

study on the number of iterations chosen for the TA-EB tick-

ets, explaining how we determined the appropriate iteration

count for our models.

A. More Results for Finding EB Tickets

To provide further empirical evidence for identifying EB

tickets in diffusion models, in Figure 2 (a) we present vi-

sualizations of pairwise mask distances across four dataset-

model pairs: CelebA [4], LSUN Church [8], and LSUN

Bedroom [8], utilizing Denoising Diffusion Probabilistic

Models (DDPMs) [3], as well as ImageNet-1K [1], using the

Latent Diffusion Model (LDM) [6]. For all settings, we ap-

ply magnitude-based structural pruning with a pruning rate

of 50%.

Due to the large number of training samples, we adopt a

“pseudo-epoch” of 1K steps/iterations to expedite the iden-

tification of EB tickets in the case of LSUN Church, LSUN

Bedroom, and ImageNet-1K. The (i, j)-th element repre-

sents the Hamming distances between the pruned subnet-

works extracted at the i-th and j-th pseudo-epochs.
Lighter colors correspond to lower inter-mask Hamming

distances, darker colors indicate higher distances. The

epoch/pseudo-epoch where the EB ticket is identified is

marked in red font. Unless otherwise stated, we use a con-

vergence threshold of η = 0.1 and a FIFO queue of length

5 for these visualizations. The results demonstrate that EB

tickets are consistently identified during the early stages of

training. This set of visualizations further empirically con-

firms the existence of EB tickets in diffusion model training.

Figure 1. More generations from the CelebA [4] dataset. a)

Generations from the unpruned model. b) Generations from the

“Scratch” model with 50% pruning rate, following the procedure

in Section 5.1 of the manuscript. c) Generations from our EB-Diff-

Train (EB)methodwith 50%pruning rate. d) Generations from our

EB-Diff-Train (TA-EB) method with 64% average pruning rate.

B. More Results for Finding TA-EB Tickets

To provide further empirical evidence for identifying TA-

EB tickets, we present visualizations of pairwise mask

distances across four dataset-model pairs in Figure 2 (b):

CelebA [4], LSUN Church [8], and LSUN Bedroom [8], all

utilizing the DDPM [3], as well as ImageNet-1K [1], using

the LDM [6]. For these experiments, we use magnitude-

based structural pruning with pruning rates of 30%, 60%,

and 80%, respectively. Similar to the case of EB tick-

ets (Section A), we adopt a “pseudo-epoch” approach for

LSUNChurch, LSUNBedroom, and ImageNet-1K datasets

to identify TA-EB tickets more efficiently. Unless other-

wise stated, we use a pseudo-epoch of 1000 steps/iterations.

The (i, j)-th element of each matrix represents the Ham-

ming distance between subnetworks pruned at the i-th and

j-th pseudo-epochs across the designated timestep regions.

Lighter colors correspond to lower inter-mask Hamming

distances, darker colors indicate higher distances. The

epoch/pseudo-epoch where the TA-EB ticket is identified

is marked in red font. Unless otherwise stated, we use a

convergence threshold of η = 0.1 and a FIFO queue of

length 5 for these visualizations. The results show that TA-

EB tickets are consistently identified during the early stages

of training, further confirming their existence in diffusion

model training.

C. Ablation Study on Pseudo-Epoch Choices

We conduct ablation studies to evaluate the impact of the

number of iterations per pseudo-epoch on drawn tickets’

performance. We employ magnitude-based structural prun-

ing to prune DDPMs [3], using the LSUNChurch dataset [8]

as a representative case. All training hyperparameters are



Figure 2. (a) Visualizations of pairwise Hamming distancematrices of EB tickets for the CelebA [4], LSUNChurch [8], LSUNBedroom [8],

and ImageNet-1K [1] datasets when using structural magnitude pruning at pruning rate of 50%. (b) Visualizations of Hamming distance

matrices of TA-EB tickets when using structural magnitude pruning with pruning rates of 30%, 60%, and 80% across timestep periods of

0-260, 240-460, and 440-1000, respectively.

consistent with those in [2], and we use 100 DDIM [7]

timesteps to generate images. Table 1 presents results ex-

amining the effect of varying the number of iterations within

a single pseudo-epoch, ranging from 100 to 5K. To provide

a robust comparison, we also include results for a pruned

network trained from scratch, which involves pruning a

Table 1. Ablation study on the choice of iterations in one pseudo-

epoch (PE) for the LSUN Church 256×256 dataset using the

DDPM [3] model with 100 DDIM timesteps.

LSUN Church 256×256

Method Iters per PE #Params ↓ MACs ↓ FID ↓ Speed-Up ↑

Unpruned - 113.7M 248.7G 26.58 1.00×

Scratch -

28.5M 62.4G

54.18 0.68×
EB-Diff-Train (EB) 100 37.89 2.10×
EB-Diff-Train (EB) 300 40.30 2.10×
EB-Diff-Train (EB) 500 38.05 2.10×
EB-Diff-Train (EB) 1000 37.60 2.10×
EB-Diff-Train (EB) 3000 34.40 2.10×
EB-Diff-Train (EB) 5000 36.90 2.10×

fully trained network to establish its connectivity and sub-

sequently reinitializing it with random weights for training.

As prior work [2] indicates, training pruned networks from

scratch is highly competitive, making this a critical baseline

for analysis. We observe that the EB tickets identified in

our experiments are not sensitive to the choice of pseudo-

epoch, as the pseudo-epoch choice marginally impacts the

final image generation quality. In all cases, we achieve a

13.88∼19.78 lower FID as well as 3.09× speedups com-

pared to the “scratch” baseline.

D. Additional Generations

To further qualitatively show the efficacy of our EB-Diff-

Train (EB) and EB-Diff-Train (TA-EB) methods, we show

additional generations from the CelebA [4] dataset in Fig. 1.

We compare our EB and TA-EB methods against two base-

lines: (1) the original unpruned network (“Unpruned”) and

(2) a 50% magnitude-based structurally pruned network

trained from scratch following the methodology outlined

in Section B (“Scratch”). The generations show that our



DiT @ ImageNet-1K 256×256
Method #Params ↓ MACs ↓ FID ↓ Iters Speed-Up ↑
Unpruned 675.1M 118.7G 28.12 100K 1.00×
Scratch 337.5M 57.0G 58.23 100K 0.72×
EB 337.5M 57.0G 33.16 100K 2.63×
TA-EB 242.1M 40.7G 52.10 40K 3.11×

EB and TA-EB tickets can generate images of high quality

while being up to 6.74× faster than the “Scratch” baseline.

E. Experiments Using the DiT

To highlight that our method can be applied to a variety

of model architectures, we include results from the popular

Diffusion Transformer (DiT [5]) architecture in Table 2 us-

ing the ImageNet-1K [1] dataset. Following the methodol-

ogy of Section B, we compare against an unpruned network

(“Unpruned”) and a magnitude-based structurally pruned

network trained from scratch (“Scratch”). The results show

that our EB-Diff-Train (EB) and EB-Diff-Train (TA-EB)

methods can be successfully applied to the DiT architecture,

yielding reductions in FID scores of 0.13 ∼ 19.07 while

also improving training speed by 3.65× ∼ 4.32× respec-

tively, as compared to the “Scratch” baseline.

F. Ablation Study on Number of Regions

To showcase that our method is robust to the number of re-

gions selected, we test 2, 3, and 4 regions, following the

same settings as the submitted manuscript, in Table 2. For

the 2 region case, we merged the first two timestep regions;

for the 4 region case, we split the last region in half. The

pruning rate was adjusted to maintain a timestep-weighted

average of∼ 64%. From this ablation study, we see that our

method is robust to the number of regions selected.

G. Ablation Study on Training Iterations

To determine the most suitable training iteration under the

same pruning rate, we summarize how generation quality

(e.g., FID scores) changeswith increased training in Table 3.

Specifically, the generation quality improves significantly,

with FID scores decreasing by 1.06 when training iterations

increase from 100K to 200K. Beyond 200K iterations, how-

ever, the generation quality gradually declines, suggesting

Table 2. Results for CIFAR-10 32×32 using the DDPM [3] model

with 100 DDIM steps under different region numbers. The num-

ber of iterations for the TA-EB methods are recorded as the total

number of iterations for the subnetwork of longest training time

DDPM@ CIFAR10 32×32
#Regions Avg. Pruning Rate #Params ↓ MACs ↓ FID ↓ Iters Speed-Up ↑
1 Region 0% 35.7M 6.1G 5.15 800K 1.00×
2 Regions 64.2% 7.4M 1.4G 7.37 200K 6.30×
3 Regions 64.0% 7.2M 1.3G 7.29 200K 5.78×
4 Regions 64.0% 7.2M 1.3G 7.55 200K 5.78×

Table 3. Effect of extending training iterations and time on an

A100 GPU under a 30% pruning rate for DDPM on CIFAR-10.

Training Time (hr) Training Iterations FID↓

3.1 100K 7.95

6.2 200K 6.89

9.3 300K 7.02

12.4 400K 7.19

15.5 500K 7.44

an optimal training window between 100K and 200K iter-

ations. The decline in generation quality after 200K likely

reflects overfitting to specific timestep regions.
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