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Table 8. Results on Single View Selection with 20 Views on the
Blender Dataset.

Method PSNR (1) SSIM (1) LPIPS ()
Uniform Sampling 26.15 0.918 0.084
FisherRF 27.12 0.925 0.079
A-Opt. (Simple) 24.88 0.908 0.094
E-Opt. (Simple) 24.87 0.901 0.097
T-Opt. (Simple) 27.29 0.929 0.076
D-Opt. (Simple) 27.25 0.930 0.075
D-Opt. (Block) ‘ 27.28 0.930 0.075

Table 9. Results on Batch View Selection on Blender dataset.

Method PSNR (1) SSIM (1) LPIPS (1)
Uniform Sampling 26.64 0.925 0.074
FisherRF 27.64 0.932 0.069
A-Opt. (Simple) 25.61 0.916 0.082
E-Opt. (Simple) 24.99 0.908 0.087
T-Opt. (Simple) 27.89 0.936 0.065
D-Opt. (Simple) 27.87 0.937 0.064
D-Opt. (Block) | 27.80 0.935 0.065

6. Twenty View Blender Results

Due to page constraints, we were unable to report the results
of each method on twenty view selection of the Blender
dataset with the single or batch view schemes. In the main
paper, we focused on ten views with the Blender dataset, as
we find that the results saturate when more views are added.

Single view selection results are shown in Table 8, where
FisherRF, T and D optimality achieve significantly higher
performance than uniform sampling. T and D optimality
outperform FisherRF, and have similar saturated results to
each other.

Results on the batch view selection are demonstrated in
Table 9, where we find similar results as the twenty view
experiment. FisherRF, T and D optimality outperform the
other baselines with T and D optimality achieving the high-
est results. Due to the large number of views and simple
scenes, results are saturated between T and D optimality.

7. Keyframe Selection

Next we present results from the keyframe selection ex-
periment on the Mip-Nerf360 dataset. In this experiment,
we find a large performance gap between FisherRF, A and
E Optimality and the other methods similar to with the

Table 10. Results on Keyframe Selection on Mip-Nerf360 Dataset.

Method PSNR (1) SSIM (1) LPIPS ({)
Uniform Sampling 18.30 0.560 0.435
FisherRF 15.66 0.471 0.515
A-Opt. (Simple) 15.67 0.479 0.519
E-Opt. (Simple) 15.96 0.475 0.524
T-Opt. (Simple) 18.66 0.560 0.425
D-Opt. (Simple) 18.57 0.559 0.426
D-Opt. (Block) | 18.73 0.571 0.417

Blender dataset. T and D optimality outperform the uni-
form sampling baseline, however results are saturated with
ten well-chosen views. Despite the performance saturation,
the block diagonal approximation leads to a noticeable im-
provement in SSIM and LPIPS metrics.

8. Render Quality Correlation on All Scenes

In this section, we first provide a more detailed explanation
of the experimental setup for our study of the correlation
between information gain and render quality. Next, we pro-
vide the sparsification plots for the remaining objects in Fig.
6.

In addition to identifying the most important training
images, another key problem for applying 3D-GS to real-
world applications is uncertainty quantification. Since in-
formation gain is dependent on the amount of information
already present in a trained 3D-GS model at a candidate
view, we would expect an inverse relationship between in-
formation gain and render quality. Therefore, we lever-
age sparsification plots to study the correlation between
information gain and render quality. Intuitively, if a 3D-
GS model has already observed data similar to a view, the
method should quantify small information gain and the ren-
der should have a high reconstruction quality. Similarly,
a candidate view with high information gain implies the
model has limited information on the viewpoint, and the
render would likely have poor reconstruction quality. This
also follows from the inverse relationship between uncer-
tainty and information stated in Section 3.2.1.

In order to study this relationship, we leverage sparsifica-
tion plots. The primary idea behind sparsification plots is to
sort candidate views by information gain, and observe the
relationship between information gain at candidate views
and render quality at the candidate views. In this experi-
ment, we train a single 3D-GS model on ten randomly cho-
sen views so that there is new information at the remaining
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Figure 6. Uncertainty correlation plots on all remaining scenes of the Blender dataset. The oracle represents a perfect sorting of the views
by PSNR. If the information gained by candidate views is well calibrated, the ordering should be similar to that of the oracle, resulting in
a low value at the left of the plot which contains the average reconstruction quality of the most informative views.

views in the dataset. Next, each method sorts the remaining
views by estimated information gain from most information
to least information. The purpose of the sparsification plot
is then to study how the views are sorted by estimated in-
formation gain.

To create the sparsification plot, the sorted views are or-
ganized into groups based on decile. For example, for one
hundred candidate views the first group would contain the
ten most informative views and the final group would con-
tain the ten least informative views. Next, the groups are
combined iteratively beginning from the most informative
views and the average PSNR is calculated for the combined
groups. Therefore, the plot represents the average PSNR of
the 2% most informative views. As a result, we would ex-
pect to see a low PSNR for the most informative views at the
left of the plot, and all methods converge at the right of the
plot when calculating the average PSNR over all images.

For baselines we use the uniform sampling method,
which should demonstrate no correlation between expected
information gain and average PSNR. We also introduce an
oracle baseline which directly observes the PSNR of each
render and represents an ideal ordering. We compare Fish-
erRF and D-Opt. (Block) with the baselines, where the best
performing method is the method most similar to the oracle
demonstrating a relationship between uncertainty and ren-
der quality.

Fig. 6 details the remaining plots for all objects in the

dataset. In the main text, we chose figures which high-
lighted the performance of FisherRF as well as D-Opt.
(Block). D-Opt. (Block) generally has a monotomic behav-
ior and performance near the oracle. However, FisherRF
sometimes does not exhibit the same behavior depending
on the object. We note that this plot is not the intended goal
of FisherRF, however we would expect a strong correlation
between information gain and reconstruction error as stated
previously.



	Introduction
	Related Work
	3D Gaussian Splatting
	Active Perception

	Method
	Preliminaries: Gaussian Splatting
	Information Gain through Optimal Experimental Design
	Uncertainty Decrease due to an Added Image

	Approximating the Covariance
	Batch Selection

	Results
	Single View Selection
	Batch View Selection
	Correlation with Render Quality
	Ablation Study

	Conclusion
	Twenty View Blender Results
	Keyframe Selection
	Render Quality Correlation on All Scenes

