
AnyCam: Learning to Recover Camera Poses and Intrinsics from Casual Videos

Supplementary Material

A. Overview
In this supplementary, we explain more details on imple-
mentation in Appendix C and the test-time refinement pro-
cess in Appendix D. We also consider limitations and future
work in Appendix E and ethical implications in Appendix F.

B. Code & Project Page
We release our code base for training, evaluation, and visu-
alization under github.com/Brummi/anycam. Additionally,
we provide interactive 3D results and more details on our
project page under fwmb.github.io/anycam.

C. Further Implementation Details
Focal Length Candidates. In our model, we configure
m = 32 distinct focal length candidates. For every can-
didate fi, we train individual prediction heads Hfi . Focal
length is not linearly related to rotation and translation mag-
nitudes. Empirically, we find that the following formula,
which combines linear and exponential spacing, provides a
good distribution of focal length candidates.

δi =
i

m− 1
(11)

f exp
i = exp (δi log(fmin) + (1− δi) log(fmax)) (12)

f lin
i = δifmin + (1− δi)fmax (13)

fi = 0.75 · f exp
i + 0.25 · f lin

i (14)

We define fmin = 0.1H and fmax = 3.5H , where H rep-
resents the height of the input image in pixels, yielding the
distribution which can be seen in Fig. 5. In this way, the
model can make predictions independent of the pixel size.

Camera Pose Parametrization. The prediction heads do
not directly output the P ∈ R4×4. To ensure that the pose
matrix is in SE3, we predict translation t ∈ R3 and rota-
tion R ∈ SO3 separately. R is parametrized via the axis-
angle representation, i.e. the model predicts three values for
the different axis rotations. We find that the axis-angle rep-
resentation is significantly more stable than the quaternion
representation and it converges faster. When using quater-
nions, it usually happens that a small number of (random)
prediction heads does not converge to meaningful results.

Training Stabilization. Our training datasets cover a di-
verse range of datasets, which all have varying scales. E.g.
driving datasets depict scenes and movements much larger

Figure 5. Focal Length Candidates. Linear-exponential distribu-
tion of focal length candidates relative to the image height.

compared to video sequences captured from VR glasses.
When naively training on all five datasets from the start,
the model does not converge to a meaningful solution. We
hypothesize that the different scales introduce noise that
hinders the optimization process. To overcome this issue,
we first undergo a warmup phase, during which datasets
are introduced one-by-one. First, the model is trained for
10,000 steps on RealEstate10K, then for another 10,000
steps on RealEstate10K and EpicKitchens, and so on un-
til all datasets have been introduced. Through this strategy,
the model can already roughly estimate the camera pose and
then only is adapted to a different scale.

Loss Configuration. The model is trained using the
Adam optimizer at a learning rate of ϵ = 1e−4. After
100,000 steps, the learning rate is reduced to ϵ = 1e−5.
We use λσF = 1, λ↑↓ = 1, and λIntr = 1. Since the flow
loss values tend to have a very small magnitude, we set the
temperature of the softmax operator in LIntr to 100. Note
that we also detach the flow losses in LIntr and only pass
gradients to the sequence head. This ensures that the differ-
ent candidate heads remain independent of each other. Fi-
nally, we also apply L2 weight decay with a factor of 0.01
on the pose tokens to avoid overflow issues when training
with mixed precision.

Model Architecture. We adapt the DinoV2 based
DepthAnything model to predict both a pixel aligned map
and tokens for pose and intrinsics. For both our backbone
and UniDepth, we rely on Vit-S.

https://github.com/Brummi/anycam
https://fwmb.github.io/anycam

D. Test-Time Refinement Details
The main objective of our test-time refinement strategy is
to reduce drift over longer time frames. To ensure geo-
metric consistency over time, we apply bundle adjustment
(BA) and optimize the camera trajectory in a sliding win-
dow fashion.

Setup. Since we primarily care about long-range depen-
dencies, we apply BA with a stride of 3 frames. After the
optimization is complete, the remaining poses are then in-
terpolated and combined with the original predictions. Dur-
ing BA, we sample a uniform 16 × 16 grid of points per
frame and then track them for 8 consecutive frames. Track-
ing is performed by chaining optical flow maps and we ad-
ditionally accumulate uncertainty per tracked point. The
uncertainty of a tracked point at a specific frame is the sum
of uncertainties from all previous frames of the track. Intu-
itively, this means that a track only has low uncertainty as
long as it does not encounter a pixel that has high uncer-
tainty. For every point track, we optimize a single 3D point
anchored in the first frame of the track and parametrize it
by inverse depth. The point is initialized via the predicted
depth that was also used as input by the AnyCam model.
Thus, a track Tfxy starting in frame f at grid location x, y
is defined by

Tfxy = ((p1, . . .p8), (σ1, . . . , σ8), d
−1) (15)

where pj are the pixel locations in the consecutive frames,
σj are the corresponding uncertainty values, and d−1 is the
inverse depth of the anchor point. In total, we optimize 1)
the camera poses, 2) the inverse depths of the anchor points,
and 3) a single focal length value.

Optimization. The main objective of our optimization
process is to minimize the reprojection error for every track.
In fact, we rely on a similar formulation as the flow loss
ℓF

i→j

f,uv used for training AnyCam. To completely filter out
very dynamic objects, we define a maximum uncertainty
σmax = 0.05 and ignore all points that exceed this thresh-
old. All others are weighted accordingly in a linear fashion.
Let T = {T000, . . .} be the set of all tracks in the sequence:

LRepr
T =

8∑
i=2

∥∥∥πf (P
1→iπ−1

f (p1, 1/d
−1))− pi

∥∥∥
1
·(σmax − σi)

(16)

LRepr =
1

|T|
∑
T∈T

LRepr
T (17)

Note that the uncertainties are not optimized during test-
time refinement. Additionally, we apply smoothness term
to encourage straight trajectories. Let n be the total number

of frames in the sequence:

LSmooth =
1

n− 2

n−2∑
i=1

∥∥∥∥(Pi→i+1
f

)−1

Pi+1→i+2
f − I4

∥∥∥∥
1,1

(18)
The final cost function is obtained by combining both terms,
with λSmooth = 0.1:

LBA = LRepr + λSmoothLSmooth (19)

We implement the entire BA process in PyTorch and use the
Adam optimizer with a learning rate of 1e−4.

Sliding Window. Optimizing the entire sequence at once
is both costly and can lead to instabilities. Therefore, we
apply BA in a sliding window fashion. We define our win-
dow to be w = 8 frames wide and use an overlap of o = 6.
That means we begin by optimizing the first 8 frames, and
then shift the window by w − o = 2 to optimize frame 3
to 10. Note that we freeze the poses that have already been
optimize and only adapt poses 9 and 10. For every sliding
window, the optimization is performed for 400 steps. This
is repeated until the end of the sequence is reached. In the
end, we perform 5000 steps of global BA, where we con-
sider all poses.

E. Limitations & Future Work
Reliance on pretrained model. AnyCam uses both pre-
trained depth and optical flow models during training and
inference. While UniDepth and UniMatch show really
strong performance, they can fail in rare cases. Depending
on the severity of the failure, the accuracy of AnyCam can
then get compromised. Typical failure cases include poor
optical flow predictions when there are challenging lighting
conditions, or inaccurate depth predictions when the input
image does not have any scene context. Note that many
errors in the input can still be dealt with due to our uncer-
tainty formulation. Similarly, even though depth prediction
are very consistent in scale as UniDepth is a metric depth
model, the depths can have small flickering. This becomes
visible when aggregating multiple depth maps over a longer
time.

For future work, it would make sense to design the model
to be reliant exclusively on images as input. Furthermore,
we plan to add a system which adapts the scale and shift of
the depth maps to be consistent among each other to allow
for more accurate 4D reconstruction.

Drift over longer time. Our test-time refinement already
greatly improves the drift problem. However, even then we
only use tracks of length 8. To overcome drift on a global
scale, our system would require a global scene represen-
tation or other techniques like keyframes. Many existing

SLAM and SfM systems [40, 43] provide inspiration for
that.

Unnatural camera motion During training, AnyCams
learns to translate images, flow, and depth of a sequence
to a realistic camera motion. Our training data is very di-
verse, covering a wide range of realistic motions, and our
experiments show that AnyCam can generalize very well.
Still, due to its nature as a neural network, the model can
fail when encountering very uncommon / unnatural camera
motions.

To improve generalization even further, we plan to train
the model on even more datasets. This can be achieved eas-
ily as our training pipeline is able digest any kind of unla-
belled videos.

F. Ethical Considerations
Our training data is partially made up of videos obtained
from public sources like YouTube. These videos can con-
tain identifying information like faces, number plates, etc..
To remove such information, faces have been blurred in
many datasets, e.g. WalkingTours, before usage in our
project. Additionally, since our model only predicts cam-
era poses and uncertainty, the output does not allow to infer
the identity of persons in the input data.

While we also aim to build a data mix that covers dif-
ferent geographical regions and domains, it is nevertheless
possible that the model learns a bias. For example, driving
data in the OpenDV dataset is mostly from the US, China,
and Europe. Our model might struggle in driving environ-
ments that are very different from this training data.

Finally, despite showing strong performance, we cannot
provide accuracy guaranties for the predictions of AnyCam.
Therefore, it should not (yet) be used in safety-critical ap-
plications.

