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Figure 8. More trajectories of flow matching-based sampling. For
improved visibility, we plot 2D slices. Given that the total num-
ber of time steps N is set to 100 in our experiments, ∆t of 0.1
corresponds to 10 steps. Classes are indicated in red.

A. Pre-Processing of Datasets in Dreal

General pre-processing steps. We aim to ensure that all
23 datasets used to curate Dreal (see Table 1) adhere to
general vascular imaging characteristics and comply with
our label quality standards. To this end, we apply care-
fully selected pre-processing steps (see Table 1, last col-
umn). First, we resample the MSD8 [1], BvEM [18],
TubeTK [4], tUbeNet [10], TopCoW [21], and DeepVes-
selNet [16] datasets, establishing appropriate blood vessel
scales (e.g., a single vessel should not occupy 90% of the
patch) and voxel sizes. In the case of the BvEM dataset,
only the labels are resampled, as the annotations were likely
made in a downsampled version of the volume. As re-
sampling may introduce label artifacts, we subsequently
smooth affected labels (TubeTK and tUbeNet) using Gaus-
sian smoothing followed by thresholding. Since the 3D-
IRCADb-01 [15] dataset contains labels of multiple struc-
tures, we solely keep venous system, artery, and portal vein
labels, converting them to binary labels. The original la-
bels of the HR-Kidney [13] dataset are of relatively poor
quality. However, enabled by the high signal-to-noise ra-
tio of the volume representing the HR-Kidney dataset, we
improve label quality by applying Algorithm 1. To fur-
ther enhance the visibility of blood vessels, the intensities
of the VesSAP [17] and LS [2] datasets are clipped at the
0% and 98% percentiles, while the intensities of the MSD8
dataset are clipped at the 20% and 98% percentiles. We crop
the MSD8 and 3D-IRCADb-01 datasets to retain only fore-

Figure 9. Experiment on the effect of our three proposed data
sources on vesselFM’s performance. We gradually augment Dreal

with 10%, 50%, and 100% of Ddrand, followed by adding 10%,
50%, and 100% of Dflow (see bottom part). We report zero-shot
Dice scores on the four evaluation datasets. We generally find
that augmenting Dreal with Ddrand and Dflow results in increased
segmentation performance (see average).

ground structures, as the images otherwise would primarily
consist of non-annotated anatomical structures. Addition-
ally, we crop the borders from the BvEM volume, given
that they predominantly contain artifacts.

Algorithm 1 HR-Kidney label improvement.
Input: Image, Intensity Delta = 0.1, Threshold = 0.9, Filter Size = 11

Median← MedianFilter(Image, Filter Size) ▷ Apply filter to image.
Mask← (Image - Median) > Int. Delta ▷ Include high local int. variations.
Mask← Mask ∨ (Image > Threshold) ▷ Include high int. values.
Mask← Mask • 13×3×3 ▷ Close small gaps.
Mask← RemoveSmallObjects(Mask) ▷ Remove small connected components.
• denotes morphological closing.

Evaluation datasets. From each evaluation dataset (see
Table 1, upper section), we extract three patches of size
1283 for fine-tuning models in the one- and few-shot set-
tings and use the remaining data for testing and validation.
OCTA [8, 20]: We allocate three of the six samples provided
in the OCTA dataset for one- and few-shot fine-tuning and
reserve the remaining three for model evaluation: two sam-
ples for testing and one sample for validation. The three
samples used for fine-tuning are center-cropped to adhere
to our target shape of 1283. SMILE-UHURA [5]: The four-
teen samples in the SMILE-UHURA dataset are divided



Figure 10. Parametrization of our domain randomized generative pipeline. All parameters were carefully tuned to ensure sufficient
diversity while preserving key characteristics relevant to the general domain of vascular images. If not indicated otherwise, all the above
transformations are applied consecutively, starting from the left-hand side. Probabilities associated with specific transformations are
indicated in blue. Following common practices in medical image analysis, we utilize, whenever possible, transformations from the MONAI
framework. Note that we exactly follow the notation from Fig. 4.

into one for validation, ten for testing, and three for extract-
ing patches for fine-tuning. For the extraction of the fine-
tuning patches, we pay special attention to extract patches
highly representative of the characteristics of MRA scans
contained in the SMILE-UHURA dataset (e.g., they contain
vasculature, brain tissue, skull, and gyri/sulci). MSD8 [1]:
From the MSD8 dataset, we utilize one sample for valida-
tion, 296 for testing, and three to extract patches for fine-
tuning. The patches for fine-tuning are chosen from repre-
sentative regions and padded, if necessary, minimally in the
z-dimension using reflective padding to conform to the tar-
get shape of 1283. BvEM [18]: The BvEM dataset contains
solely a single volume of shape 3571 × 5145 × 2495. We
choose the first 130 slices to extract three 1283 patches for
fine-tuning and one for validation. Then, we leave a buffer
of 120 slices to minimize information leakage between the
patches used for fine-tuning and testing. Lastly, we extract
three bigger test volumes of shape 5003 from the remaining
volume, limiting the overlap of these volumes with the fine-
tuning patches in the x- and y-position as much as possible.

B. Parameters of Domain Randomization

An overview of the parametrization of transformations and
operations in our proposed domain randomized generative
pipeline, used to generate Ddrand, is shown in Fig. 10.

C. More Details on Experimental Setup

Parametrization of segmentation model. As already
stated in the main manuscript, we opt for MONAI’s
re-implementation of [12]’s UNet architecture, called
DynUNet, to present our segmentation model. To be spe-
cific, we set strides to [[1, 1, 1], [2, 2, 2], [2, 2, 2],
[2, 2, 2], [2, 2, 2], [2, 2, 2]], kernel size to [[3, 3,
3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3], [3, 3, 3]],
upsample kernel size to [[2, 2, 2], [2, 2, 2], [2, 2,
2], [2, 2, 2], [2, 2, 2]], filters to [32, 64, 128, 256,
320, 320], and activate residual connection-based convolu-
tion blocks (res block). We found that this parametriza-
tion performed best in our experiments.

Training of vesselFM. We employ a combination of Dice
and cross-entropy loss functions, weighted by 0.9 and 0.1.
VesselFM is trained on a single V100 GPU (32 GB) with a
batch size of 8 until convergence. The learning rate is set to
10-4. We utilize linear warm-up and a learning rate decay
to 10-5. During training, we sample classes near uniformly
from Dreal and also from Dflow. We solely apply data aug-
mentation to samples from Dreal. To optimize training effi-
ciency, we perform data augmentation offline. Specifically,
we apply, after extracting 1283 patches, random flipping and
rotation (angle in [0◦, 10◦]) along all axes followed by ran-



Table 6. More detailed ablation of supplementing Dreal with Ddrand and Dflow, covering all four evaluation datasets and all tasks. We
generally find that the combination of all of our three proposed data sources yields the best segmentation performance.

Task Model OCTA [8, 20] BvEM [18] SMILE-UHURA [5] MSD8 [1]
Dice ↑ clDice ↑ Dice ↑ clDice ↑ Dice ↑ clDice ↑ Dice ↑ clDice ↑

ze
ro

-s
ho

t Dreal 36.94 57.23 29.44 52.71 65.45 63.53 5.60 8.60
Dreal +Ddrand 47.02 61.05 65.19 65.13 69.38 72.10 29.84 37.47
Dreal +Ddrand +Dflow 46.94 67.07 67.49 62.04 74.66 75.27 29.69 36.14

on
e-

sh
ot Dreal 69.32 77.68 72.01 85.22 72.20 74.87 27.14 40.51

Dreal +Ddrand 70.63 81.11 75.77 78.48 71.77 71.90 35.35 49.39
Dreal +Ddrand +Dflow 72.10 83.73 78.27 79.91 76.43 78.36 36.88 48.65

fe
w

-s
ho

t Dreal 73.01 80.14 67.18 81.41 77.63 77.24 38.65 48.71
Dreal +Ddrand 74.44 82.64 73.43 84.75 77.37 78.28 42.31 54.44
Dreal +Ddrand +Dflow 75.70 84.03 78.11 84.54 78.77 79.37 45.04 57.25

dom elastic deformation (σ in [10, 20] and magnitude in
[100, 500]) and random zooming (factor in [0.9, 1.3]).

One- and few-shot fine-tuning. In the one- and few-shot
setting, we fine-tune vesselFM using a similar setup with a
learning rate of 10-5. We train vesselFM until convergence,
selecting the checkpoint with the best Dice score on the re-
spective validation volume. We apply lightweight data aug-
mentation on the fly: random zooming (factor in [1, 1.3]),
random shearing (shearing factors in [0, 0.4]), random flip-
ping, random Gaussian smoothing (σ in [0, 0.5]), random
Gaussian noise (µ of 0.3, σ in [0, 0.01]), and random his-
togram shifting (number of points in [5, 10]).

Following our general procedure, we fine-tune all base-
lines until convergence and select the checkpoint with
the best Dice score on the validation volume for testing.
tUbeNet [10]: We fine-tune tUbeNet using our training
scheme described above, solely adapting the patch size
(tUbeNet operates on patches of shape 643) and employ-
ing its linear learning rate decay. We further apply the
same lightweight data augmentations used for fine-tuning
vesselFM. VISTA3D [9]: We fine-tune VISTA3D with the
script provided by the authors. As VISTA3D predicts 127
classes, we default to the only class representing blood ves-
sels, the hepatic vessel class. Given that VISTA3D is de-
signed specifically for CT images, we replace their interval-
based intensity scaling scheme with a percentile-based scal-
ing scheme and omit their resampling transformation. Fur-
ther augmentations are left unchanged. During inference,
we use the default ”auto + point” configuration, which has
been shown to yield the best results. SAM-Med3D [19]: We
adopt SAM-Med3D’s training and inference pipeline with-
out major changes. We utilize their default setting, pro-
viding one query point during training and five during in-
ference. Since their data augmentation pipeline closely re-
sembles vesselFM’s, we retain SAM-Med3D’s without al-
terations. MedSAM-2 [23]: As MedSAM-2 is trained on
images of size 1024, we resample patches used for fine-
tuning. Other than that, we keep their original setup, which
fine-tunes the mask decoder of the SAM 2 model and the

memory layer, unchanged. We use the default configuration
of one query point in every second slice for both training
and inference.

D. VesselFM From Scratch
’VesselFM (from scratch)’ (see Table 2) demonstrates a rel-
atively strong performance compared to other baselines and
even outperforms them on the OCTA and BvEM datasets
in some metrics. We attribute this to their unique imag-
ing artifacts and intensity patterns, which, unlike those in
CT and MRA, have not been observed by any baseline dur-
ing pre-training. Note that the human retinal OCTA sam-
ple present in tUbeNet’s training dataset exhibits poor label
quality and differs significantly from the characteristics [20]
of the murine cerebral OCTA images used in our exper-
iments. Further, architectural biases (SAM-Med3D and
MedSAM-2 rely on large Transformers) and mismatches
in already learned representations (VISTA3D is exclusively
trained on CT images; tUbeNet is exclusively trained on
images with stark contrast to background tissues) may im-
pede few-shot fine-tunability of baselines. This, together
with ’vesselFM (from scratch)’ benefiting from our well-
evaluated UNet architecture, explains its relatively strong
performance.

E. More Detailed Ablation of Data Sources
A more detailed ablation study of the effect of supple-
menting Dreal with Ddrand and Dflow, covering all evaluation
datasets and tasks, is shown in Table 6. We find that the
combination of all of our three proposed data sources gen-
erally yields the best segmentation performance.

To further substantiate this hypothesis, we investigate
how the performance of vesselFM scales with the amount of
available training data for zero-shot segmentation. To this
end, we progressively augment Dreal with 10%, 50%, and fi-
nally 100% of the data from our two synthetic data sources,
Ddrand and Dflow. We scale weights assigned to data sources
accordingly. Similar to Table 6, we first augment Dreal with
Ddrand, followed by Dflow. Our findings are demonstrated in



Figure 11. More slices of exemplary domain randomized im-
ages (a), images sampled from our flow matching-based generative
model F (b), and images sampled from Med-DDPM (c). Masks
are shown in translucent red.

Fig. 9. We observe a significant performance increase in-
troducing Ddrand, which flattens as it approaches 100%. On
the SMILE-UHURA and BvEM datasets, performance ad-
ditionally spikes after introducing Dflow, while performance
on OCTA and MSD8 stagnates. Averaged across all four
evaluation datasets (see Fig. 9, average), we find that the
additional diversity introduced by Dflow proves to be con-
sistently beneficial for segmentation performance.

F. VesselFM’s Utility in (Pre-)Clinical Settings

In (pre-)clinical settings, high-quality annotations for
emerging imaging technologies and novel, unstudied struc-
tures of interest are often not immediately available. There-
fore, clinicians and researchers typically create voxel-level
annotations from scratch through labor-intensive manual la-
beling to train supervised segmentation algorithms, a ne-
cessity for automated, large-scale, and accurate analysis.
Voxel-level annotations, however, can be far more effi-
ciently obtained via automated pre-segmentation and iter-
ative label refinement. This process is often referred to as

Figure 12. More exemplary synthetic masks Msyn, generated by
our proposed domain randomized generative pipeline (see Fig. 4a).

bootstrapping. With specialist models failing to bridge do-
main gaps, vesselFM’s exceptional zero-shot generalization
and fine-tunability render it ideal for such applications.

G. More Samples From Ddrand and Dflow

We present additional samples from Ddrand and Dflow in
Fig. 11a and b, respectively. In conclusion, one can state
that our domain randomized generative pipeline produces a
wide variety of image-mask pairs with highly diverse fore-
and background geometries and textures, while images
sampled from our flow matching-based generative model
F exhibit intensity patterns closely mimicking those of real
images in Dreal. Please note that Fig. 11c depicts images
sampled from the Med-DDPM baseline for comparison.

H. More Masks Msyn

To further showcase the wide variety of synthetic masks
Msyn produced by our proposed domain randomized gen-
erative pipeline, we present a comprehensive selection in
Fig. 12. Masks contained in Msyn encompass a broad range
of realistic vascular patterns, capturing variations in blood
vessel scale, density, curvature, and tortuosity.

I. Additional Qualitative Zero-Shot Results
To emphasize the exceptional zero-shot generalization of
vesselFM, we present additional qualitative results achieved
on all four evaluation datasets (see Figs. 13 to 16). Our
findings demonstrate that vesselFM segments blood ves-
sels very accurately across all evaluation datasets. Interest-
ingly, vesselFM also segments tubular-appearing structures
beyond blood vessels (e.g., axons (see Fig. 15) or parts of
the colon (see Fig. 14)). This highlights vesselFM’s strong
inductive bias towards tubular shapes.



Table 7. Comparison to specialist models trained on individual blood vessel segmentation datasets.

Task Model OCTA [8, 20] BvEM [18] SMILE-UHURA [5] MSD8 [1]
Dice ↑ clDice ↑ Dice ↑ clDice ↑ Dice ↑ clDice ↑ Dice ↑ clDice ↑

ze
ro

-s
ho

t specialist model - TopCoW [21] 39.14 24.03 55.09 52.42 38.71 34.35 4.18 3.45
specialist model - VesSAP [17] 33.31 60.69 50.89 32.75 16.27 25.63 9.40 15.19
specialist model - CSD [3, 6] 21.92 42.98 0.04 0.01 59.17 53.07 0.44 -

vesselFM (ours) 46.94 67.07 67.49 62.04 74.66 75.27 29.69 36.14

on
e-

sh
ot specialist model - TopCoW [21] 64.80 74.39 71.53 78.65 36.52 35.66 17.61 -

specialist model - VesSAP [17] 69.26 76.67 72.31 75.94 27.40 30.50 28.94 35.40
specialist model - CSD [3, 6] 64.62 77.56 68.64 78.96 75.96 78.20 16.09 -

vesselFM (ours) 72.10 83.73 78.27 79.91 76.43 78.36 36.88 48.65

fe
w

-s
ho

t specialist model - TopCoW [21] 70.28 76.79 65.89 77.76 52.97 47.54 26.25 37.16
specialist model - VesSAP [17] 70.27 77.14 69.36 78.40 46.83 44.31 36.27 44.74
specialist model - CSD [3, 6] 71.11 79.36 59.94 78.61 78.20 78.59 34.28 47.57

vesselFM (ours) 75.70 84.03 78.11 84.54 78.77 79.37 45.04 57.25

By segmenting all tubular structures in the volume, ves-
selFM segments structures, which are, at least to some de-
gree, not annotated in ground truth labels (e.g., aorta or
other components of the systemic arterial circulation in
MSD8 (see Fig. 14)). We argue that this may artificially
deflate vesselFM’s quantitative results reported for the zero-
shot task in Table 2.

J. Additional Flow Matching Trajectories

Fig. 8 presents additional sampled flow matching trajecto-
ries, similar to Fig. 5. Specifically, we visualize the map-
ping from x0 ∼ N (0, I) to samples x1 of exemplary classes
indicated in red.

K. Statistical Analysis of Results

We conduct a statistical analysis of the quantitative results
reported in the main manuscript using paired t-tests. To this
end, we compare vesselFM’s base configuration to the re-
spective runner-up. We find all results to be statistically
significant (p < 0.05), except for the Dice score in the abla-
tion on class conditioning (Table 4, 4th row; p = 0.081). The
clDice score in the ablation on class conditioning, however,
remains significant (p = 0.036). Notably, values reported in
Table 5 are statistically significant (p = 0.019 for Dice; p =
2.39 · 10−5 for clDice).

L. Computational Resources

VesselFM comprises 31,418,977 parameters and requires
minimal computational resources compared to other foun-
dation models for 3D image segmentation. Processing a
volume of shape 1283 takes 335.7 ms on a T4 GPU, 95.8
ms on a V100 GPU, 30.6 ms on an A100 GPU, and 3.3 s
on an AMD Epyc 7702 CPU, with a VRAM consumption
of approximately 4.21 GB.

M. Comparison to Specialist Models
We further compare vesselFM to specialist models trained
on individual blood vessel segmentation datasets, as shown
in Table 7. As expected, vesselFM not only consistently
outperforms state-of-the-art foundation models for medical
image segmentation, but also specialist models, even when
trained on exactly the same imaging modality (CSD and
SMILE-UHURA both contain MRA images).



Figure 13. Qualitative results achieved on an exemplary test sample from the SMILE-UHURA dataset [5]. We compare vesselFM’s
prediction in the zero-shot setting (top row) to the ground truth label contained in the SMILE-UHURA dataset (bottom row). VesselFM
delivers remarkable results free of artifacts and accurately maintains the tubular appearance of blood vessels (see black box).

Figure 14. Qualitative results achieved on multiple test samples from the MSD8 dataset [1]. We compare vesselFM’s predictions in the
zero-shot setting to ground truth labels for the task of hepatic vessel segmentation contained in the MSD8 dataset. VesselFM accurately
segments all blood vessels (e.g., aorta (marked in blue) and other major components of the systemic arterial circulation) and even other
tubular structures (e.g., the colon (marked in purple) and parts of the rib cage) present in CT scans.



Figure 15. Qualitative results achieved on the three test volumes extracted from the BvEM dataset [18]. We compare vesselFM’s predictions
in the zero-shot setting (top row) to ground truth labels contained in the BvEM dataset (bottom row). We find that vesselFM segments
murine cortical vasculature contained in volume electron microscopy (vEM) images very precisely. Interestingly, vesselFM segments not
only blood vessels but also tubular-appearing axons and even dendrites of pyramidal cells (see black box) visible in vEM images [7].

Figure 16. Qualitative results achieved on two test samples from the OCTA dataset [8, 20]. We compare vesselFM’s predictions in the
zero-shot setting (top row) to ground truth labels contained in the OCTA dataset (bottom row). Although OCTA images are known for
being plagued by dominant imaging artifacts [11, 14, 22], vesselFM still manages to segment densely connected vasculature (see black
box).
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