
4D-Fly: Fast 4D Reconstruction from a Single Monocular Video

Supplementary Material

A. Additional Implementation Details

Details of the Learning Rate. Our framework includes
three optimization processes: the optimization of the
Canonical Gaussian Map (Section 3.3), the optimization of
foreground Gaussians (Section 3.4), and the optimization of
background Gaussians (Section 3.4). An Adam optimizer is
employed for all three processes. The specific learning rates
for each of these processes are summarized in Table 4.

Table 4. Learning Rate Details.

Parameters CGM Foreground Background

µi 2× 10−4 0 2× 10−3

∆µi N/A 2× 10−3 N/A
ci 1× 10−2 0 1× 10−2

∆ci N/A 1× 10−3 N/A
Si 5× 10−3 0 5× 10−3

oi 5× 10−2 0 5× 10−2

Details of the Loss Weights. During the construction of
the Canonical Gaussian Map, we set the loss weights as fol-
lows: λI = 1.0, λD = 0.8, λM = 0.8, and λalign =
1.5. For the optimization of foreground Gaussians in Sec-
tion 3.4, the weights are set to λd,I = 1.0, λd,D = 0.8,
λd,M = 0.8, λreg,rig = 1.5, and λreg,col = 1.5. For the
optimization of background Gaussians in Section 3.4, the
weights are set to λs,I = 1.0, λs,D = 0.8, and λs,M = 0.8.
Details of the KNN Algorithm. Our framework inte-
grates the KNN algorithm in two key components: the
anchor-based Gaussian propagation algorithm and the com-
putation of Lreg,rig. We use a KD-tree-based implementa-
tion of KNN provided by Open3D. Specifically, we first
construct a KD-tree from the input point cloud, and then
use search knn vector 3d method to retrieve the in-
dices and squared distances of the nearest neighbors for the
queried point. In the anchor-based Gaussian propagation
algorithm, we set K = 5. For the computation of Lreg,rig,
K1 = 20 and K2 = 10 are used.
Details of the Unreconstructed Areas Mask. In our
method, we employ an unreconstructed areas mask M̂(p)
[17] to identify regions where new Gaussians should be
added. When computing M̂(p), the hyperparameters are
set as follows: λ1 = 0.5 and λ2 = 50× Median(D(p)).
Details of the view sampling. For the experiments in Fig-
ures 6, 8, 9, 10 and Tables 1, 3, we follow the official bench-
mark setting to sample novel views (Fig. 4). For video visu-
alization in supp, we set the camera to follow the wandering
trajectory.

Seq. Spin

Seq. Paper-windmill

Train View:
Eval View:

⋯
⋯

t

Train and eval view visualization on Dycheck datasetFigure 4. Train and eval view visualization on Dycheck dataset.

B. Additional Method Details

Illustration of Gaussian Propagation and Regulariza-
tion. Figure 5 presents an overview of our anchor-based
Gaussian propagation algorithm and spatial-velocity-based
regularization. Specifically, we calculate the offset, which
is also defined as the initial velocity of a dynamic Gaus-
sian for simplicity, as the weighted sum of the deforma-
tion of nearby anchor points between consecutive frames.
This computed initial velocity is then incorporated as part
of the distance metric when calculating the rigidity regular-
ization term, ensuring consistency and stability across dy-
namic scenes.
Detailed Algorithm. In Algorithm 1, several key processes
are abstracted into function calls due to space limitations.
To enhance clarity and reproducibility, we provide a step-
by-step implementation of each summarized function from
Algorithm 1 in Algorithm 2, Algorithm 3, and Algorithm 4.

Algorithm 2 Anchor Based Gaussian Propogation
1: Input: 4D scene map constructed from observations between time

steps 1 and t, denoted as G1→t, the depth Map at time step t + 1,
denoted as Dt+1, the 2D tracks from time step t to t+ 1, denoted as
Ut→t+1, camera extrinsic Et, and camera intrinsic Kt.

2: Output: 4D scene map G1→t+1
init .

3: for pj in Domain(Ut→t+1) do
4: xj ← F(pj ,Dt(pj)), where F is unproject function with re-

spect to Et and Kt.
5: x′

j ← F (Ut→t+1(pj), Dt+1 (Ut→t+1(pj)))

6: aj = x′
j - xj

7: end for
8: for G

si
d,i ∈ G

1→t
d do

9: {xji}Kj=1 ← KNN(µi,t), where µi,t = µi+∆µi,t is the mean
of Gsi

d,i at timestep t

10: ∆µinit
i,t+1 ← ∆µi,t +

∑K
j=1 Softmax

(
−∥xji − µi∥

)
aj

11: end for

Algorithm 3 Build Canonical Gaussian Map
1: Input: Image It+1, depth Dt+1, foreground mask Mt+1, camera

extrinsic Et+1, and camera intrinsic Kt+1.
2: Output: Canonical Gaussian Map GCM(p) at timestep t+ 1.
3: for pi in Domain(I) do
4: µi ← F(pi,Dt+1(pi)), where F is unproject function with re-

spect to Et+1 and Kt+1

5: ci ← It+1(pi)
6: si ← 2D(pi)/(fx+fy), where fx and fy are the camera lengths

get by Kt+1

7: oi ← Sigmoid(1)
8: CGM(pi)← Initialize(µi, ci, si, oi)
9: end for

10: for i = 1, ..., nCGM do
11: Optimize(GCM(p), It+1,Dt+1,Mt+1,Et+1,Kt+1)
12: end for

Algorithm 4 Foreground/Background Optimization Step
1: Input: 4D scene map G1→t+1, image Iti+1, depth map Dti+1,

foreground mask Mti+1, camera extrinsic parameters Eti+1, and
camera intrinsic parameters Kti+1. Note that ti = t for the Fore-
ground Optimization.

2: Output: Foreground-optimized or background-optimized 4D scene
map (G1→t+1) after the optimization step.

3: Î(p), M̂(p), D̂(p)← Render(G1→t+1
init , ti,Eti+1,Kti+1)

4: L ← λI∥Î− I∥1 + λM∥M̂−M∥1 + λD∥D̂−D∥1
5: if Is Foreground Optimization Step then
6: Lreg,rig ,Lreg,col ← 0

7: for Gi ∈ G1→t+1
d do

8: N ′
i ← K1NN(Gd,i), where spatial distance is used as the dis-

tance metric.
9: Ni ← K2NN(N ′

i), where velocity (vinit
i,t+1) is used as the dis-

tance metric.
10: for Gj ∈ Ni do
11: ∆µ,t ← µj,t − µi,t
12: ∆µ,t+1 ← µj,t+1 − µi,t+1

13: ∆init
v,t+1 ← vinit

i,t − vinit
j,t

14: wi,j = exp(−λµ∥∆µ,t∥2 − λv∥∆init
v,t+1∥2)

15: Lreg,rig ← Lreg,rig + wi,j ∥∆µ,t −∆µ,t+1∥2
16: end for
17: Lreg,col ← ∥ci,t+1 − ci,t∥2
18: end for
19: L ← L+ Lreg,rig/k2|Gd|+ Lreg,col/|Gd|
20: end if
21: Backward and step(L,G1→t+1, optimizer)

C. Additional Experiments and Analysis

C.1. Comparison with NeRF-based Baselines

In Figure 8, we present a qualitative comparison of 4D-Fly
with NeRF-based 4D reconstruction methods, including T-
NeRF [11], Nerfies [31], and HyperNeRF [32]. We show
results for the same sequence, viewpoint, and timestep as
in Figure 3 for comparison. As shown, NeRF-based ap-
proaches are less effective at reconstructing high-frequency
areas, often resulting in overly smooth transitions. Fur-
thermore, our method outputs empty (white) values for re-
gions not visible in the training views, whereas NeRF-based
methods produce random, noisy values. Finally, our method

𝒙j
𝒂j 𝒙𝑗

′

KNN Bound

Anchor Based Gaussian Propogation

Spatial-velocity-based Regularization

𝒅𝒊, 𝒋 = 𝝀𝝁 ∥ ∆𝒗,𝒕+𝟏
𝒊𝒏𝒊𝒕 ∥𝟐+ 𝝀𝒗 ∥ ∆𝝁, 𝒕∥𝟐

Figure 5. Upper: An illustration of anchor-based Gaussian propa-
gation. For each dynamic Gaussian G1→t

d,i , its motion is computed
as a weighted sum of the offsets of its K nearest anchor points,
where the weights are determined based on the spatial distances
between G1→t

d,i and each anchor point. We also define the motion
of Gaussian as vinit

i,t+1. Lower: We use a spatial (i.e., µi and µj)
and velocity (i.e., vinit

i,t+1 and vinit
j,t+1) weighted distance to identify

the Gaussians that should maintain local rigidity relationships dur-
ing fast 4D scene optimization.

significantly reduces both training and inference times com-
pared to NeRF-based methods.

C.2. Comparison on Dynamic Scenes Dataset.
In Figure 9, we present a qualitative comparison of 4D-
Fly against 4D GS [46], Dynamic Gaussian Marbles [35],
and Shape of Motion [44] on the Nvidia Dynamic Scene
Dataset. Since the training sequences are captured with a
stationary camera on the dataset, 4D GS [46] suffers from
limited multi-view information and often cannot reconstruct
clear foregrounds. Compared to Dynamic Gaussian Mar-
bles [35] and Shape of Motion [44], 4D-Fly produces quali-
tatively better renderings, delivering more accurate appear-
ances and fewer outliers across most sequences.

C.3. Comparison with Some Recent Baselines.
We compare with more recent baselines (including GFlow
[45], MonST3R [52] and Align3R [27]) in Table 5 and Fig-
ure 6. As the code of GFlow is not released, we use its demo

Table 5. Quantitative results of train view fitting on DAVIS dataset
(GFlow’s setting) and novel view synthesis on Dycheck dataset.

Method View fitting Novel view synthesis
SSIM ↑ LPIPS ↓ PSNR ↑ mSSIM ↑ mLPIPS ↓ mPSNR ↑

MonST3R 0.52 0.18 23.47 0.32 0.52 11.06
Align3R 0.60 0.17 24.02 0.35 0.46 12.74
GFlow 0.92 0.12 29.74 - - -
4D-Fly 0.96 0.04 34.69 0.60 0.37 17.03

and reported values (lacking NVS metrics). For MonST3R
and Align3R, we first align the output point maps to the
world coordinates using the predict extrinsics and GT ex-
trinsics. Then we render the point map of eval timestep with
Open3D. As point-based geometric models, they underper-
form in view fitting and synthesis tasks.

4DFly (Ours) GFlow (Web Demo)

MonST3R Align3R

Figure 6. The NVS comparison with GFlow [45], MonST3R [52]
and Align3R [27] on DAVIS dataset.

C.4. More Reconstruction visualizations
We provide visualizations with larger camera deviation
(similar to the SOM [44] website demo) in Figure 7.

Visualizations with larger camera deviation. Upper: Seq. breakdance-flare. Lower:
Seq. breakdance-flare.

Figure 7. More visualization with larger camera deviation. Upper:
Seq. breakdance-flare. Lower: Seq. breakdance-flare.

C.5. Visualization of Point Tracking
In Figure 10, we present the visualization of point track-
ing generated by 4D-Fly, which includes several sequences
from the Dycheck iPhone dataset [11] and NVIDIA Dy-
namic Scenes dataset [51]. As shown, 4D-Fly demonstrates
robust long-range tracking capabilities across various types
of dynamic scenes.

Ours
~5.3min

Nerfies
>1200min

HyperNeRF
>1200min

T-NeRF
>1200min

GTTrain-view

Figure 8. Qualitative Comparison on the DyCheck iPhone Dataset with NeRF-based Baselines.

GT Ours
~5.1min

DG Marbles
~ 156.7min

Shape of Motion
~102.2min

4DGS
~ 21.3min

Figure 9. Qualitative Comparison on the Nvidia Dynamic Scenes Dataset.

Figure 10. Visualization of Point Tracking Generated by 4D-Fly. We first render novel view images and then overlay the predicted 3D
point tracks on top. The sequences are from the Dycheck iPhone dataset and NVIDIA Dynamic Scenes dataset.

	Introduction
	Related Work
	Method
	Scene Representation
	Anchor-based Gaussian Propagation
	Expand 4D Scene Map with CGM
	Fast 4D Scene Optimization

	Experiments
	Implementation Details
	Datasets and Evaluation Metrics
	Comparisons
	Ablation Study and Analysis

	Conclusion
	Additional Implementation Details
	Additional Method Details
	Additional Experiments and Analysis
	Comparison with NeRF-based Baselines
	Comparison on Dynamic Scenes Dataset.
	Comparison with Some Recent Baselines.
	More Reconstruction visualizations
	Visualization of Point Tracking

