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Supplementary Material

In this document, we provide detailed proofs on Theorem
3.1 and Theorem 3.2 in the main body in Sec. A, and provide
more ablation studies and visualization results in Sec. B and
Sec. C, respectively.

A. Main Proofs
A.1. Proof of Theorem 3.1

Proof. In regards of the perturbation Hessian LPH, we can
deduce the following equation:
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Ô

(k,θq)
i −O

(k)
i

)2
· H̄(O(k))

i,i

]

=
∑
i

E(O,θq)

[(
Ô
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where θq denotes the quantization parameter. Since the
Hessian matrix is computed by adding fixed perturbations
to the output, it is an inherent attribute of the networks.
Thus, we assume that the Hessian matrix is independent of
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As for the average perturbation Hessian, the following equa-
tions hold:
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Based on Eqs. (16)-(17) and E
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, we

can deduce that E [LPH] = E [LAPH].

A.2. Proof of Theorem 3.2

Proof. We firstly denote the gradient of the perturbation
Hessian (PH) loss w.r.t. the quantization parameter θq during
the mini-batch gradient descent as below:
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where |B| is the batch size. We further define the random
variable X

(k)
i :

X
(k)
i = 2

(
Ô
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Accordingly, Eq. (18) can be rewritten as
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Similarly, as H̄i,i ≈ E[H̄O(k)

i,i ] when the sample size
N becomes large enough. We denote the gradient of the
average perturbation Hessian (APH) loss w.r.t. the parameter
θq as below:
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We assume that all the output elements are independent
across different samples and channels. Using the variance
formula for the product of random variables, the gradient
variance of the original PH loss is formulated as below:
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where
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The gradient variance of the APH is:
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As R ≥ 0, we can deduce that Var [g(θq)] ≥ Var [g′(θq)].



Table A. Ablation results w.r.t the top-1 accuracy (%) of the pro-
posed main components on ImageNet with the W3/A3 setting.

Method DeiT-B Swin-B

Full-Prec. 84.54 85.27

baseline 74.32 75.28
+APH 75.62 77.16

+APH +MR 76.31 78.14

Table B. Ablation results w.r.t the top-1 accuracy (%) of the pro-
posed APH loss, compared to alternative losses on ImageNet with
the W3/A3 setting.

Method DeiT-B Swin-B

Full-Prec. 81.80 85.27

MSE 74.32 75.28
BH 72.90 76.63
PH 75.03 76.89

APH 75.62 77.16

Table C. Ablation results w.r.t the top-1 accuracy (%) of the pro-
posed MLP Reconstruction (MR) method on ImageNet with the
W3/A3 setting.

Method DeiT-B Swin-B

Full-Prec. 81.80 85.27

MR 81.43 84.97

B. More Ablation Results

In this document, we provide more ablation results for DeiT-
B and Swin-B as complements to Tables 3-5 in the main
body. The results are summarized in Table A, Table B and
Table C. As displayed, the APH loss can significantly pro-
motes the accuracy, and outperforms the alternative losses.
The proposed MR method also effectively reconstructs the
pretrained model by replacing the GELU activation function
with ReLU, without significantly sacrificing the accuracy.

C. Visualization Results

C.1. Loss Curve of APH

Fig. A shows the loss curves of the perturbation Hessian
(PH) loss and the average perturbation Hessian (APH) loss
for a certain block. As illustrated, the APH loss generally
exhibits smaller fluctuations than the PH loss, resulting in
more stable training.
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Figure A. The loss curve of ViT-Small-blocks.6 on W3/A3.
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(a) APH importance of top 8 tokens.
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(b) APH importance of patch tokens.

Figure B. Illustration on the token importance in ViT-S.blocks.7.
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Figure C. Illustration on the channel importance.

C.2. APH Importance

Fig. B demonstrates the APH importance for tokens from
ViT-S.blocks.7, where Fig. B (a) displays the tokens with top
8 importance, and Fig. B (b) shows the importance of the
rearranged 14 × 14 patch tokens. It can be observed that
the importance of the class token, the first one in Fig. B (a),
is much higher than that of the patch tokens, and distinct
patch tokens have substantially different APH importance.
Moreover, Fig. C displays APH importance for the output
channels with indices 100 to 250 from ViT-S.blocks.7, indi-
cating that the values of APH importance for certain channels
are significantly higher than that of others.

The above visualization results indicate that the impor-
tance between distinct tokens or channels varies significantly
in Vision Transformers, implying the necessity of incorpo-
rating important metrics during reconstruction.
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