
empty
AVF-MAE++ : Scaling Affective Video Facial Masked Autoencoders

via Efficient Audio-Visual Self-Supervised Learning
(Supplementary Materials)

A. Overview
In this supplementary material, we provide more details
about AVF-MAE++ and present more experimental results.
Specifically, we give a detailed description of the configura-
tions of our AVF-MAE++ in Sec. B. We then present the de-
tails on building our pre-training datasets and the specifics
of targeted downstream datasets in Sec. C. Afterwards, we
provide more implementation details about our experiments
in Sec. D. In the end, we offer more evaluation results and
analysis on AVF-MAE++ in Sec. E.

B. Model Configurations
We develop three different versions of AVF-MAE++, i.e.,
Base: AVF-MAE++ (B), Large: AVF-MAE++ (L), Huge:
AVF-MAE++ (H), to extensively explore the scaling prop-
erties of audio-visual MAE for AVFA tasks. The primary
differences across three model versions are about the con-
figurations of modality-specific encoders. We display the
configuration details of three models in Tab. 1 below.

C. Datasets
C.1. Unlabeled Hybrid
Our unlabeled hybrid dataset is a hybrid dataset consisting
of unlabeled facial videos from CN-Celeb series [7, 21],
MER2024 [52], VoxCeleb2 [14], AV-Speech [19], CelebV-
HQ [111]. For all the collected facial video data, we employ
the pre-processing pipeline from [21] to perform filtering
and cropping, leading to further computation redundancy
reduction. Note that more details about pre-processing
could be found in the original paper [7]. The detailed com-
ponents of the unlabeled hybrid dataset are shown in Tab. 2.
Next, we specify the handing of each dataset in brief.
VoxCeleb2. VoxCeleb2 [14] includes over 1 million clips
of more than 6,000 celebrities, extracted from around
150,000 interview videos on YouTube. VoxCeleb2 is di-
vided into a development (dev) set and a test set. Here, we
first select parts of the clips from dev set, and then perform
pre-processing, leading to 515K processed samples.
AV-Speech. The video clips in AV-Speech [19] are col-
lected from lectures (e.g., TED Talks) and how-to videos
on YouTube. Overall, this dataset contains roughly 4,700

hours of clips with approximately 150,000 distinct speak-
ers, spanning a wide variety of people, languages and face
poses. In this work, we collect parts of the overall clips and
pre-process these selected clips, resulting in 371K samples.
MER2024. MER2024 is an extended version of MER2023,
which consists of 115,595 video clips from Internet. After
pre-processing, we obtain 85K samples for the pre-training.
CN-Celeb series. CN-Celeb series dataset is a large-scale
continuous visual-speech benchmark in Mandarin Chinese,
which consists of short clips collected from TV news and
Internet speech shows. We randomly pick a part of data and
pre-process the nonstandard clips. In the end, we take 370K
clips for the pre-training stage.
CelebV-HQ. CelebV-HQ contains 35,666 video clips with
the resolution of 512 × 512 at least, involving 15,653 identi-
ties. After data pre-processing, there exists 18K clips which
could be utilized for our AVFA pre-training.

C.2. Labled Hybrid
We construct the labled hybrid datasets for the post-pre-
training stage of our AVF-MAE++ on the downstream tasks
to establish the progressive training pipeline by taking the
union of various downstream targeted datasets.

Taking the CEA task as an example, we first align the
label semantics of the downstream targeted datasets, as il-
lustrated in Tab. 3 below. Afterwards, we remap the labels
of the downstream datasets to construct annotations of the
labeled hybrid dataset. Since both two datasets of the DEA
task cannot apply label semantic alignment, we only con-
struct the labeled hybrid datasets for the CEA and MER
tasks. For the MER task, all of the five datasets we se-
lected follow the popular three-emotion paradigm, so both
targeted datasets and the labeled hybrid dataset adhere to
the same paradigm. Notably, we do not include the MSP-
IMPROV [5] dataset into the construction of CEA labeled
hybrid dataset due to its unique annotation characteristics.

C.3. Targeted Fine-tuning
To verify the effectiveness and generalization ability of pro-
posed AVF-MAE++ series models, we conduct extensive
experiments on 17 datasets across three downstream AVFA
tasks. The detailed information of involved datasets are pro-
vided in the following:
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Configurations AVF-MAE++ (B) AVF-MAE++ (L) AVF-MAE++ (H)
patch size 16 16 16
embedding dimensions (encoder) 512 640 768
number of attention heads (encoder) 8 10 12
encoder depth 10 12 15
embedding dimensions (decoder) 384 512 640
number of attention heads (decoder) 6 8 8
decoder depth 4 4 4
number of attention heads (fusion) 8 10 12
fusion depth 2 2 2
index of hierarchical skip connections [77] [3, 6, 9] [3, 7, 11] [4, 9, 14]

Table 1. The overall illustrations of configuration details about AVF-MAE++ across three different versions. Note that the index of
hierarchical skipping connections is from 0 to (encoder depth - 1).

Dataset Size Source
VoxCeleb2 [14] 515K YouTube
AV-Speech [19] 371K YouTube
MER2024 [52] 85K Open-Media
CN-Celeb series [7, 21] 370K Open-Media
CelebV-HQ [111] 18K Open-Media
Unlabeled Hybrid 1.36M Multi-Source

Table 2. The detailed components of our unlabeled hybrid
dataset. We build this unlabeled dataset by collecting clips from
multiple sources to better support AVF-MAE++ pre-training.

MAFW [56] is a multi-modal compound in-the-wild affec-
tive dataset. It consists of 10,045 clips annotated with 11
common emotions. Each video clip is also accompanied by
several textual sentences to describe the subject’s affective
behaviors. The dataset provides an 11-class single-labeled
set with 9,172 clips and a 43-class compound set with 8,996
clips. We follow the original paper to adopt a 5-fold cross-
validation protocol to evaluate model performance.
DFEW [40] includes 16,372 clips extracted from movies.
This dataset presents several challenging characteristics,
such as extreme illumination and occlusion. We perform
5-fold cross-validation on 11,697 single-labeled clips for
evaluations to align with previous works.
MER-MULTI [51] provides 3,373 training clips originat-
ing from Chinese TV series and movies. We follow the
original paper to conduct 5-fold cross-validation on 3,373
clips for hyper-parameter tuning and evaluate performance
on a held-out test set with 411 clips.
MER24-T&V [52] (MER2024-Train&Val) is extended
by merging all the labeled samples of MER2023 Chal-
lenge [51]. Following the original paper, we fine-tune mod-
els on the Train set and evaluate performance on the Val set.
IEMOCAP [4] contains roughly 12 hours of videos from
10 subjects recorded in five sessions. Following common
practice [77], we utilize 5,531 samples of five emotional
categories (i.e., Anger, Neutral, Happiness, Excitement,

Sadness), then merge Excitement into Happiness to formu-
late a four-emotion form. Furthermore, we conduct 5-fold
cross-validation in a session-independent manner.
CREMA-D [6] is a high-quality dataset for analysing the
multi-modal patterns of acted emotions. It consists of 7,442
clips recorded by 91 actors. Since there is no official split,
we follow the previous works [77, 85] to conduct 5-fold
cross-validation in a subject-independent manner. We also
conduct experiments on a subset of four emotions (i.e., Hap-
piness, Sadness, Anger, Neutral) and only report the perfor-
mance of the last fold under this setup.
RAVDESS [60] consists of emotional speech and songs,
which comprises 2,880 clips featuring 24 professional ac-
tors. Following [77], we only use the speech part and adopt
a subject-independent 6-fold cross-validation protocol for
evaluating performance [76, 77].
MSP-IMPROV [5] is an acted audio-visual corpus to ex-
plore emotional behaviors during conversational dyadic in-
teractions. MSP-IMPROV [5] contains 8,438 clips recorded
in six sessions from 12 actors. Following [77, 85], we only
use samples of four emotions and conduct 6-fold cross-
validation in a session-independent manner.
AVCAffe [72] is a large-scale audio-visual affect dataset
simulating the remote work scenarios, which includes al-
most 108 hours of videos along with self-reported labels for
cognitive load and affect (i.e., Arousal, Valence). Since the
arousal and valence scores are given on a scale of 1-4, we
follow [72, 77] to formulate their predictions as a classi-
fication task. We deploy the official split (86 subjects for
training and 20 subjects for test) to evaluate performance.
Werewolf-XL [102] is a database for studying spontaneous
emotions during competitive group interactions of Were-
wolf games. It contains roughly 15 hours of audio-visual
recordings. To keep consistent with previous works, we use
14,632 samples with dimensional annotations (i.e., Arousal,
Valence, Dominance) and conduct subject-independent 5-
fold cross-validation for performance assessment.
CASME II [95] includes videos of 24 subjects, totaling 145
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Dataset Emotional Labels

MAFW [56]
Anger, Disgust, Fear, Happiness, Neutral, Sadness

Surprise, Contempt, Anxiety, Helplessness, Disappointment
DFEW [40] Happy, Sad, Neutral, Angry, Surprise, Disgust, Fear
MER-MULTI [51] & MER24-T&V [52] Worried, Happy, Neutral, Angry, Surprise, Sad
IEMOCAP [4] Anger, Happy, Neutral, Sad
CREMA-D [6] Anger, Disgust, Fear, Happy, Neutral, Sadness
RAVDESS [60] Neutral, Calm, Happy, Sad, Angry, Fearful, Disgust, Surprised

Labeled Hybrid Anger, Disgust, Fear, Happy, Neutral, Sadness, Surprise
Worried, Clam, Contempt, Anxiety, Helplessness, Disappointment

Table 3. The emotional labels of the built labeled hybrid and related downstream targeted datasets. Overall, there are 13 emotional
labels in the labeled hybrid dataset for the CEA task.

Configurations Value
video encoder mask type tube
video encoder mask ratio 0.9
audio encoder mask type random
audio encoder mask ratio 0.8125
video input size 3 × 16 × 160 × 160
audio input size 1 × 256 × 128
video decoder mask type running cell
video decoder mask ratio 0.5
audio decoder mask type random
audio decoder mask ratio 0.5
optimizer AdamW [61]
base learning rate 1.5e-4
weight decay 0.05
target normalizations Yes
loss weight factor 0.0025
Mel filterbank sequence length 128
audio augmentation Yes
video augmentation MultiScaleCrop
optimizer momentum β1, β2 = 0.9, 0.95
base batch size 164
contrastive temperature 0.07
video region size (2, 5, 10)
audio region size (4, 4)
repeated augmentation [37] No
learning rate schedule cosine decay
frame difference optimization Yes
warmup epoch 20
epoch 200
frame 16
sampling rate 4
audio sampling rate 16000
clip grading None (B & L), 0.7 (H)

Table 4. The pre-training settings of AVF-MAE++. We only
show the details of AVF-MAE++ (B) here for the example.

samples. All samples are captured using lab cameras, with
the frame rate of 200 FPS. After merging into three emo-

tional categories, the number of Negative, Positive, and Sur-
prise are 88, 32, and 25, respectively.
SAMM [17] provides various facial expression data, en-
compassing action unit coding as well as indices for micro-
expression onset, offset, and apex. All of the videos have a
resolution of 2040 × 1088 pixels with a frame rate of 200
FPS. After grouping the videos into three emotions, SAMM
has 92 Negative, 26 Positive, and 15 Surprise samples.
SMIC [50] consists of video data from 16 subjects, totaling
164 samples. All the samples are recorded using a lab cam-
era with the frame rate of 100 FPS. The original frame size
of each sample is 640 × 480 pixels. The sample number of
Negative, Positive, and Surprise emotions are 70, 51, and
43, respectively.
CAS(ME)3 [49] is distinguished by its inclusion of multi-
source information. In this work, we only select the Part A
to evaluate model performance, which comprises data from
100 subjects, totaling 943 samples. The samples are cap-
tured using a lab camera, and have an original resolution of
1280 × 720 pixels. The overall number of Negative, Posi-
tive, and Surprise emotional samples are 508, 64, and 201.
MMEW [3] includes both macro- and micro-expressions.
It consists of 300 MEs and 900 macro-expression samples
with a large resolution (i.e., 1920 × 1080) at 90 FPS. Fol-
lowing previous works [65, 110], we merge the seven emo-
tions into three emotions, then evaluate perfromance.

D. Implementation Details
We pre-train three versions of AVF-MAE++ on the built un-
labeled hybrid dataset using a machine with 8 × NVIDIA
RTX A6000 GPUs. Besides the methods we have proposed
for computational efficiency improvements in the main pa-
per, we also adapt mix-precision training at the engineering
level to speed up pre-training. Following [77, 81, 91], we
train the encoder with FP-16 mixed precision and the de-
coder with FP-32 precision to avoid the potential precision
overflow risk during model pre-training. The repeated aug-
mentation for video data is not adapted for pre-training. The
learning rate is linearly scaled according to the total batch
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Method Modality
MAFW (11-class) CREMA-D (6-class) Werewolf-XL

UAR WAR UAR WAR Average

AVF-MAE++ (H) Audio 27.15 38.78 73.51 73.02 33.22
AVF-MAE++ (H) Video 42.24 55.61 79.23 79.97 45.38

Table 5. Results of uni-modal AVF-MAE++ across three representive CEA and DEA datasets. Note that we average the mertics for
the three dimensions of Werewolf-XL [102] dataset.

size (i.e. lr = base lr × batch size / 256). The detailed
pre-training settings are illustrated in Tab. 4 above.

In the supervised post-pre-training stage, we fine-tune
the pre-trained encoder on the lableled hybrid dataset for
different downstream AVFA tasks. To better maintain the
pre-training effects, we slightly increase the drop path rate
and adapt the repeated augmentation. Afterwards, we con-
duct the specific fine-tuning to output the targeted mod-
els on categorical emotion analysis (CEA), dimensional
emotion analysis (DEA), and micro-expression recognition
(MER) three tasks. Specifically, we employ the almost
same pipeline for three downstream tasks, except that we
deploy the MSE Loss and add activation functions before
the model head for the DEA task. The detailed information
about the post pre-training and targeted fine-tuning settings
of AVF-MAE++ can be found in Tab. 6. For simplicity, we
omit the parameter configurations that are consistent with
the pre-training phase in Tab. 4.

E. More Evaluations
E.1. Performance Comparisons
To more comprehensively verify the effectiveness of AVF-
MAE++, we first present the performance of 11 single-
labeled emotions and the overall metrics on MAFW (11-
class) dataset, as illustrated in Tab. 11. As can be seen,
our method exhibits outstanding performance across most
emotions, indicating its powerful learning capacity and the
effectiveness of scaling audio-visual MAE.

Subsequently, we present more comparative results of
AVF-MAE++ and other state-of-the art AVFA methods
on MAFW (43-class) [56], MSP-IMPROV [5], CRMEA-
D (4-class) [6], DFEW [40], AVCAffe [72], IEMO-
CAP [4], CRMEA-D (6-class) [6], RAVDESS [60], MER-
MULTI [51], MER24-T&V [52], and Werewolf-XL [102]
datasets, as displayed in the tables below. We draw the
conclusion that our AVF-MAE++ can further improve the
recognition results across multiple CEA and DEA datasets
since it has more discriminative learning capability.

Finally, we present more comparison results of our AVF-
MAE++ and state-of-the-art MER methods on five repre-
sentative datasets, as shown in Tab. 19 below. The extensive
experimental results show that our model exhibits compet-
itive results, demonstarting the generalization capability of
the learned affective representations by AVF-MAE++.

Configurations
Post

Pre-training
Targeted

Fine-tuning
optimizer AdamW [61]
base learning rate 1e-3 5e-4
weight decay 0.05
optimizer momentum β1, β2 = 0.9, 0.999
inference segment 2
inference crop 2
learning rate schedule cosine decay
warmup epoch 5
epoch 100
drop path 0.1
layer decay 0.75
base batch size 32
tubelet size 2
color jitter factor 0.4
mix up [100] 0.8
RandAug [15] (0, 0.25)
label smoothing [79] 0.1
repeated augmentation [37] 2

Table 6. The post pre-training and targeted fine-tuning set-
tings of AVF-MAE++. Here, we only show the detailed settings
of AVF-MAE++ (B) on the CEA downstream task.

Source Dataset → Targeted Dataset WAR
MSP-IMPROV → CREMA-D (4-class) 94.53%
RAVDESS → IEMOCAP 70.95%

Table 7. The results of our cross-dataset study.

E.2. Overall ablation studies

We supplement and integrate the systematical set of overall
ablation studies to extensively explore the contributions of
our improvements to model performance under fair settings,
as illustrated in Tab. 8 below. We can clearly figure out that
each improvement component can make positive impact on
our overall approach. The parameter increase is primarily
due to LGI-Former, which expands the attention parame-
ters compared to Vanilla ViT [18], but effectively reduces
FLOPs, as consistently demonstrated in [58]. With our care-
ful design, we can lead to impressive pre-training speedup,
as shown in Tab. 8. Meanwhile, we can improve fine-tuning
speed by 20.63% compared to baseline on MAFW.
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Method Pre-training Dataset Pre-training Time
MAFW

WAR (%)
MER24-T&V

WAR (%)

HiCMAE-B (Baseline) VoxCeleb2-dev 115.45h 56.17 70.95
HiCMAE-B + Dual Masking VoxCeleb2-dev 81.46h (1.42×) 54.63 68.93
Dual masking + Vanilla LGI-Former VoxCeleb2-dev 77.45h (1.49×) 55.11 69.42
Dual masking + Improved LGI-Former VoxCeleb2-dev 79.07h (1.46×) 56.12 70.36
+ Pre-training Data Scaling Unlabeled Hybrid 84.23h (1.37×) 56.47 70.67
+ IAV-CL Module Unlabeled Hybrid 85.87h (1.34×) 57.02 71.40
+ PSI Strategy {i.e., AVF-MAE++ (B)} Unlabeled Hybrid 85.87h (1.34×) 57.50 (+1.33) 72.11 (+1.16)
Model
Scaling

AVF-MAE++ (L) Unlabeled Hybrid 88.58h (1.30×) 59.13 (+2.96) 72.33 (+1.38)
AVF-MAE++ (H) Unlabeled Hybrid 93.52h (1.23×) 60.24 (+4.07) 72.28 (+1.33)

Table 8. The comprehensive ablation studies for our introduced AVF-MAE++.
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Figure 1. The qualitative visualizations of overall audio-visual reconstructions.

E.3. Uni-modal Comparison Results

We extra provide the uni-modal comparison results of our
AVF-MAE++ (H) across three representive CEA and DEA
datasets, as illustrated in Tab. 5 above. Note that please refer
to Tab. 11, 10, & 17 for detailed uni-modal comparisons.
As can be seen, our uni-modal models consistently exhibit
competitive performance, indicating the effectiveness of our
model design.

E.4. Cross-Dataset Studies

We employ the AVF-MAE++ (B) models trained on the
MSP-IMPROV and RAVDESS datasets to conduct cross-
dataset studies on CREMA-D (4-class) and IEMOCAP
datasets, exhibiting 94.53% and 70.94% WAR, as shown
in Tab. 7 above. The experimental results demonstrates that
our model exhibits robust generalization and transferability
of learned AVFA representations. Note that please refer to
Tab. 13 & 16 below for more performance comparisons.

E.5. Qualitative Analysis
Audio-visual reconstruction visualizations. Fig. 1 shows
the qualitative visualizations of overall audio-visual recon-
structions. Form these outcomes, we can conclude that our
method can capture crucial factors of facial emotional ex-
pressions more effectively, such as eyes and lip movements,
promoting discriminative AVFA representations learning,
which leads to better quality of overall reconstructions.
Confusion matrices. In Fig 2, we display the detailed con-
fusion matrices of our proposed AVF-MAE++ (H) for five
folds across MAFW (11-class) dataset. The results demon-
strates that our model performs consistently and balances
well across all five folds of the dataset, highlighting the ro-
bustness and generalizability of our model, thereby indicat-
ing the effectiveness of our design.
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（a）Fold -1 （b）Fold -2 （c）Fold -3

（d）Fold -4 （e）Fold -5

Figure 2. The detailed confusion matrices of our AVF-MAE++ (H) for five folds across MAFW (11-class) dataset.

Method SSL Modality UAR WAR Macro-F1

Wav2Vec2.0 [1] (NeurIPS’20) ✓ A 5.27 20.38 –
HuBERT [38] (TASLP’21) ✓ A 5.36 20.70 –
WavLM-Plus [9] (J-STSP’22) ✓ A 5.51 21.09 –
ResNet-18 [34] (CVPR’16) × V 6.18 23.83 4.89
ViT [18] (ICLR’21) × V 8.62 31.76 7.46
C3D [82] (ICCV’15) × V 9.51 28.12 6.73
ResNet-18+LSTM [56] (MM’22) × V 6.93 26.60 5.56
ViT+LSTM [56] (MM’22) × V 8.72 32.24 7.59
C3D+LSTM [56] (MM’22) × V 7.34 28.19 5.67
T-ESFL [56] (MM’22) × V 9.15 34.35 7.18
Former-DFER [106] (MM’21) × V 10.21 32.07 –
T-MEP [104] (TCSVT’23) × V 9.50 31.54 –
ResNet-18+LSTM [56] (MM’22) × A+V 7.85 31.03 5.95
C3D+LSTM [56] (MM’22) × A+V 7.45 29.88 5.76
T-ESFL [56] (MM’22) × A+V 9.93 34.67 8.44
T-MEP* [104] (TCSVT’23) × A+V 11.51 34.11 –
T-MEP [104] (TCSVT’23) × A+V 13.22 36.58 –
HiCMAE-T [77] (IF’24) ✓ A+V 12.07 34.84 10.01
HiCMAE-S [77] (IF’24) ✓ A+V 13.47 36.29 11.53
HiCMAE-B [77] (IF’24) ✓ A+V 13.29 37.36 12.16
AVF-MAE++ (B) ✓ A+V 15.42 43.41 14.28
AVF-MAE++ (L) ✓ A+V 15.59 43.93 14.52
AVF-MAE++ (H) ✓ A+V 17.25 43.83 15.25
ResNet-18+MDRE [96] (SLT’18) × A+V+T 9.02 33.64 –
AMH [97] (ICASSP’20) × A+V+T 10.24 35.35 –
Rajan et al. [70] (ICASSP’22) × A+V+T 11.09 35.33 –
T-ESFL [56] (MM’22) × A+V+T 9.68 35.02 8.65
T-MEP* [104] (TCSVT’23) × A+V+T 13.25 37.69 –
T-MEP [104] (TCSVT’23) × A+V+T 15.22 39.00 –

Table 9. The Comparative results of AVF-MAE++ with state-
of-the-art methods on MAFW (43-class). Macro-F1: macro-
averaged F1-score.

Method SSL Modality #Params (M) UAR WAR
AuxFormer [29] (ICASSP’22) × A – – 58.70
LR+eGeMAPS [20, 43] ✓ A – 52.70 –
LR+wav2vec [1, 43] ✓ A – 66.50 –
Wav2Vec2.0 [1] (NeurIPS’20) ✓ A 95 72.57 72.41
HuBERT [38] (TASLP’21) ✓ A 95 72.72 72.57
WavLM-Plus [9] (J-STSP’22) ✓ A 95 73.34 73.39
AuxFormer [29] (ICASSP’22) × V – – 53.10
VO-LSTM [27] (ACII’19) × V – – 66.80
Goncalves et al. [30] (TAFFC’22) × V – – 62.20
Lei et al. [45] (TAFFC’23) × V – 64.68 64.76
SVFAP [78] (TAFFC’24) ✓ V 78 77.31 77.37
MAE-DFER [76] (MM’23) ✓ V 85 77.33 77.38
EF-GRU [84] (ICASSP’22) × A+V – – 57.06
LF-GRU [84] (ICASSP’22) × A+V – – 58.53
TFN [98] (EMNLP’17) × A+V – – 63.09
MATER [28] (ICIP’20) × A+V – – 67.20
MulT-Base [84] (ICASSP’22) ✓ A+V 38 – 68.87
MulT-Large [84] (ICASSP’22) ✓ A+V 89 – 70.22
AuxFormer [29] (ICASSP’22) × A+V – – 71.70
AV-LSTM [27] (ACII’19) × A+V – – 72.90
AV-Gating [27] (ACII’19) × A+V – – 74.00
Goncalves et al. [30] (TAFFC’22) × A+V – – 77.30
Ladder Networks [31] (ICASSP’23) × A+V – – 80.30
VQ-MAE-AV+
Attn. Pooling [71]

✓ A+V 30 – 78.40

VQ-MAE-AV+
Query2Emo [71]

✓ A+V 30 – 80.40

HiCMAE-T [77] (IF’24) ✓ A+V 20 83.84 83.74
HiCMAE-S [77] (IF’24) ✓ A+V 46 84.46 84.38
HiCMAE-B [77] (IF’24) ✓ A+V 81 84.91 84.89
AVF-MAE++ (B) ✓ A+V 169 85.10 85.09
AVF-MAE++ (L) ✓ A+V 303 85.69 85.60
AVF-MAE++ (H) ✓ A+V 521 86.02 85.95

Table 10. Performance comparisons of the AVF-MAE++ with
state-of-the-art methods on CREMA-D (6-class).
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Method Venue SSL Modality #Params (M)
Accuracy of Each Emotion (%) Metrics (%)

AN DI FE HA NE SA SU CO AX HL DS UAR WAR

Wav2Vec2.0 [1] NeurIPS’20 ✓ A 95 59.01 9.39 26.08 31.47 32.04 46.52 9.91 1.69 12.23 3.05 6.04 21.59 29.69
HuBERT [38] TASLP’21 ✓ A 95 54.97 15.49 31.20 28.64 36.88 58.39 12.52 2.54 12.55 5.34 16.48 25.00 32.60
WavLM-Plus [9] J-STSP’22 ✓ A 95 55.62 17.21 40.48 36.65 36.53 57.44 11.12 2.12 11.35 9.54 11.54 26.33 34.07
ResNet-18 [34] CVPR’16 × V 11 45.02 9.25 22.51 70.69 35.94 52.25 39.04 0.00 6.67 0.00 0.00 25.58 36.65
ViT [18] ICLR’21 × V – 46.03 18.18 27.49 76.89 50.70 68.19 45.13 1.27 18.93 1.53 1.65 32.36 45.04
S2D [10] TAFFC’24 × V 9 – – – – – – – – – – – 43.40 57.37
C3D [82] ICCV’15 × V 78 51.47 10.66 24.66 70.64 43.81 55.04 46.61 1.68 24.34 5.73 4.93 31.17 42.25
ResNet-18+LSTM [56] MM’22 × V – 46.25 4.70 25.56 68.92 44.99 51.91 45.88 1.69 15.75 1.53 1.65 28.08 39.38
FE-Adapter [32] FG’24 × V 7 – – – – – – – – – 2.84 – 39.41 55.02
ViT+LSTM [56] MM’22 × V – 42.42 14.58 35.69 76.25 54.48 68.87 41.01 0.00 24.40 0.00 1.65 32.67 45.56
C3D+LSTM [56] MM’22 × V – 54.91 0.47 9.00 73.43 41.39 64.92 58.43 0.00 24.62 0.00 0.00 29.75 43.76
Former-DFER [106] MM’21 × V 18 58.23 11.45 31.29 75.06 43.07 63.81 46.02 0.42 26.22 2.88 2.25 32.79 45.31
T-ESFL [56] MM’22 × V – 62.70 2.51 29.90 83.82 61.16 67.98 48.50 0.00 9.52 0.00 0.00 33.28 48.18
T-MEP [104] TCSVT’23 × V 5 52.91 17.41 28.01 80.79 49.42 58.73 49.54 0.00 26.18 2.25 3.56 33.53 47.53
DFER-CLIP [107] BMVC’23 ✓ V 153 – – – – – – – – – – – 39.89 52.55
SVFAP [78] TAFFC’24 ✓ V 78 64.60 25.20 35.68 82.77 57.12 70.41 58.58 8.05 32.42 8.40 9.89 41.19 54.28
EmoCLIP [23] FG’24 ✓ V – – – – – – – – – – – – 34.24 41.46
MAE-DFER [76] MM’23 ✓ V 85 67.77 25.35 34.88 77.13 58.26 71.09 57.46 8.90 33.08 11.83 12.09 41.62 54.31
UniLearn [11] arXiv’24 ✓ V 101 – – – – – – – – – – – 43.72 58.44
A3lign-DFER [80] arXiv’24 ✓ V – – – – – – – – – – – – 42.07 53.24
ResNet-18+LSTM [56] MM’22 × A+V – 54.47 11.89 7.07 82.73 54.85 55.06 39.35 0.00 15.99 0.39 0.00 29.26 42.69
C3D+LSTM [56] MM’22 × A+V – 62.47 3.17 15.74 77.30 42.20 65.30 42.67 0.00 19.14 0.00 0.00 30.47 44.15
AMH [97] ICASSP’20 × A+V – 51.73 18.68 28.13 79.14 52.55 52.26 46.29 0.26 29.62 1.74 2.39 32.98 48.83
T-ESFL [56] MM’22 × A+V – 60.73 1.26 21.40 80.31 58.24 75.31 53.23 0.00 14.93 0.00 0.00 33.35 48.70
T-MEP* [104] TCSVT’23 × A+V 61 54.98 22.11 32.23 82.79 50.90 62.50 49.93 0.87 29.27 8.09 6.70 36.40 48.17
T-MEP [104] TCSVT’23 × A+V 61 57.04 24.85 36.09 78.96 50.83 61.85 51.28 1.29 38.47 6.46 1.70 37.17 51.15
MMA-DFER [13] CVPR’24 ✓ A+V – – – – – – – – – – – – 44.25 58.45
HiCMAE-T [77] IF’24 ✓ A+V 20 67.72 24.73 34.56 75.81 55.63 73.74 56.45 2.97 29.69 6.87 13.74 40.17 53.41
HiCMAE-S [77] IF’24 ✓ A+V 46 67.94 26.13 36.00 75.00 56.51 73.33 58.41 8.47 34.39 7.25 14.84 41.66 54.45
HiCMAE-B [77] IF’24 ✓ A+V 81 69.24 29.73 34.72 78.32 59.15 77.69 60.65 6.78 31.11 8.02 13.74 42.65 56.17
AVF-MAE++ (B) – ✓ A+V 169 76.14 22.55 44.32 84.79 59.16 76.60 60.46 1.69 29.91 8.37 12.13 43.10 57.50
AVF-MAE++ (L) – ✓ A+V 303 72.25 32.40 46.56 81.54 63.93 78.50 61.95 4.68 31.44 5.34 20.33 45.36 59.13
AVF-MAE++ (H) – ✓ A+V 521 71.89 38.19 40.80 84.25 68.49 76.40 64.66 3.83 36.24 8.02 13.80 46.05 60.24
FineCLIPER [8] MM’24 ✓ T+V 20 – – – – – – – – – – – 45.01 56.91
ResNet18+MDRE [96] SLT’18 × A+T+V – 45.59 9.35 24.30 76.31 51.10 74.87 28.82 2.08 30.99 0.00 0.00 31.22 48.33
AMH [97] ICASSP’20 × A+T+V – 54.91 19.41 30.01 82.79 51.42 60.73 51.54 0.00 28.18 0.00 0.00 34.45 49.87
Rajan et al. [70] ICASSP’22 × A+T+V – 56.10 9.96 41.58 84.13 60.39 63.95 44.59 0.00 24.26 2.69 1.76 35.40 48.78
T-ESFL [56] MM’22 × A+T+V – 61.89 1.10 7.69 85.90 – 71.87 62.17 0.00 36.00 0.00 0.00 31.00 50.29
T-MEP* [104] TCSVT’23 × A+T+V 111 53.03 19.32 40.65 79.94 55.89 74.17 53.48 2.15 26.61 1.15 5.10 37.41 50.96
T-MEP [104] TCSVT’23 × A+T+V 111 56.95 18.19 42.89 81.62 60.14 71.60 58.22 3.21 30.53 2.27 7.51 39.37 52.85

Table 11. Performance comparisons of AVF-MAE++ with state-of-the-art CEA methods on MAFW (11-class). AN: Anger. DI:
Disgust. FE: Fear. HA: Happiness. NE: Neutral. SA: Sadness. SU: Surprise. CO: Contempt. AX: Anxiety. HL: Helplessness. DS:
Disappointment. UAR: Unweighted Average Recall. WAR: Weighted Average Recall. *: The pre-trained models is not deployed for
initialization. –: Unaccessible Results. We highlight the best performance in bold and underline the second performance.

Method SSL Modality #Params (M) UAR WAR

AuxFormer [29] (ICASSP’22) × A+V – 62.97 70.28
Tran et al. [84] (ICASSP’22) ✓ A+V – 59.41 65.29
AV-HuBERT [74] (ICLR’22) ✓ A+V 103 – 65.27
FAV-HuBERT [85] (MM’23) ✓ A+V 103 61.05 68.35
TAPT-HuBERT [85] (MM’23) ✓ A+V 103 63.95 70.46
CTAPT-HuBERT [85] (MM’23) ✓ A+V 103 60.83 68.02
AW-HuBERT [85] (MM’23) ✓ A+V 103 65.72 71.80
HiCMAE-T [77] (IF’24) ✓ A+V 20 63.16 72.78
HiCMAE-S [77] (IF’24) ✓ A+V 46 63.90 74.35
HiCMAE-B [77] (IF’24) ✓ A+V 81 65.78 74.95
AVF-MAE++ (B) ✓ A+V 169 68.90 75.07
AVF-MAE++ (L) ✓ A+V 303 68.95 75.59
AVF-MAE++ (H) ✓ A+V 521 70.05 76.07

Table 12. The performance comparisons of our AVF-MAE++
with state-of-the-art methods on MSP-IMPROV. #Params (M):
Model parameters in million magnitude.

Method SSL Modality #Params (M) UAR WAR

AuxFormer [29] (ICASSP’22) × A+V – 91.10 91.62
Tran et al. [84] (ICASSP’22) ✓ A+V – 83.29 83.46
AV-HuBERT [74] (ICLR’22) ✓ A+V 103 – 85.47
FAV-HuBERT [85] (MM’23) ✓ A+V 103 87.34 87.61
TAPT-HuBERT [85] (MM’23) ✓ A+V 103 92.78 92.84
CTAPT-HuBERT [85] (MM’23) ✓ A+V 103 90.52 90.39
AW-HuBERT [85] (MM’23) ✓ A+V 103 93.65 93.65
HiCMAE-T [77] (IF’24) ✓ A+V 20 92.47 92.67
HiCMAE-S [77] (IF’24) ✓ A+V 46 93.34 93.48
HiCMAE-B [77] (IF’24) ✓ A+V 81 94.00 94.13
AVF-MAE++ (B) ✓ A+V 169 93.81 94.04
AVF-MAE++ (L) ✓ A+V 303 93.05 93.16
AVF-MAE++ (H) ✓ A+V 521 94.82 94.92

Table 13. Performance comparisons of the AVF-MAE++ with
state-of-the-art methods on CREMA-D (4-class).
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Method SSL Modality #Params (M) UAR WAR
Wav2Vec2.0 [1] (NeurIPS’20) ✓ A 95 36.15 43.05
HuBERT [38] (TASLP’21) ✓ A 95 35.98 43.24
WavLM-Plus [9] (J-STSP’22) ✓ A 95 37.78 44.64
C3D [82] (ICCV’15) × V 78 42.74 53.54
R(2+1)D-18 [83] (CVPR’18) × V 33 42.79 53.22
3D ResNet-18 [33] (CVPR’18) × V 33 46.52 58.27
EC-STFL [40] (MM’20) × V – 45.35 56.51
ResNet-18+LSTM [106] (MM’21) × V – 51.32 63.85
ResNet-18+GRU [106] (MM’21) × V – 51.68 64.02
Former-DFER [106] (MM’21) × V 18 53.69 65.70
CEFLNet [57] (IS’22) × V 13 51.14 65.35
EST [58] (PR’23) × V 43 53.43 65.85
STT [62] (arXiv’22) × V – 54.58 66.65
NR-DFERNet [46] (arXiv’22) × V – 54.21 68.19
DPCNet [92] (MM’22) × V 51 57.11 66.32
IAL [47] (AAAI’23) × V 19 55.71 69.24
M3DFEL [90] (CVPR’23) × V – 56.10 69.25
T-MEP [104] (TCSVT’23) × V 5 54.14 65.22
Video Swin-T [59] (CVPR’22) × V 88 59.38 71.90
UniLearn [11] (arXiv’24) ✓ V 101 66.80 76.68
CLIPER [48] (ICME’24) ✓ V 88 57.56 70.84
S2D [10] (TAFFC’24) ✓ V 9 65.45 74.81
DFER-CLIP [107] (BMVC’23) ✓ V 153 59.61 71.25
SVFAP [78] (TAFFC’24) ✓ V 78 62.83 74.27
EmoCLIP [23] (FG’24) ✓ V – 58.04 62.12
MAE-DFER [76] (MM’23) ✓ V 85 63.41 74.43
VideoMAE [81] (NeurIPS’22) ✓ V 86 58.32 70.94
MoCo [35] (CVPR’20) ✓ V 32 53.47 67.45
A3lign-DFER [80] (arXiv’24) ✓ V – 64.09 74.20
ResNet-18+LSTM [104] (TCSVT’23) × A+V – 52.41 64.32
C3D+LSTM [104] (TCSVT’23) × A+V – 53.77 65.17
AMH [97] (ICASSP’20) × A+V – 54.48 66.51
T-MEP* [104] (TCSVT’23) × A+V 61 55.06 66.30
T-MEP [104] (TCSVT’23) × A+V 61 57.16 68.85
HiCMAE-T [77] (IF’24) ✓ A+V 20 60.13 72.43
HiCMAE-S [77] (IF’24) ✓ A+V 46 63.05 74.33
HiCMAE-B [77] (IF’24) ✓ A+V 81 63.76 75.01
AVF-MAE++ (B) ✓ A+V 169 63.74 75.42
AVF-MAE++ (L) ✓ A+V 303 65.14 76.24
AVF-MAE++ (H) ✓ A+V 521 66.88 77.45
FineCLIPER [8] (MM’24) ✓ T+V 20 65.98 76.21

Table 14. Performance comparisons of the AVF-MAE++ with
state-of-the-art CEA methods on DFEW.

Method SSL Modality #Params (M) Arousal Valence
VGG-16+
MC3-18 [72] (AAAI’23)

× A+V 47 38.90 41.70

VGG-16+
3D ResNet-18 [72] (AAAI’23)

× A+V 69 37.30 39.40

VGG-16+
R(2+1)D-18 [72] (AAAI’23)

× A+V 67 40.50 39.50

ResNet-18+
MC3-18 [72] (AAAI’23)

× A+V 44 36.00 39.20

ResNet-18+
3D ResNet-18 [72] (AAAI’23)

× A+V 66 35.10 39.10

ResNet-18+
R(2+1)D-18 [72] (AAAI’23)

× A+V 64 39.50 37.70

HiCMAE-T [77] (IF’24) ✓ A+V 20 39.64 36.74
HiCMAE-S [77] (IF’24) ✓ A+V 46 42.13 42.65
HiCMAE-B [77] (IF’24) ✓ A+V 81 43.18 44.20
AVF-MAE++ (B) ✓ A+V 169 43.02 46.93
AVF-MAE++ (L) ✓ A+V 303 45.21 47.83
AVF-MAE++ (H) ✓ A+V 521 47.25 49.66

Table 15. Performance comparisons of the AVF-MAE++ with
state-of-the-art methods on AVCAffe. The evaluation metrics
for Arousal and Valence both are weighted F1-score (WA-F1).

Method SSL Modality #Params (M) UAR WAR

FBANK [87] (ICASSP’24) × A – – 51.52
AV-HuBERT [74] (arXiv’22) ✓ A 90 – 58.54
RepLAI [64] (NeurIPS’22) ✓ A 5 – 57.53
AVBERT [44] (ICLR’21) ✓ A 10 – 60.94
MAViL [44] (ICLR’21) ✓ A 86 – 59.46
Wav2Vec2.0 [1] (NeurIPS’20) ✓ A 95 69.88 67.32
HuBERT [38] (TASLP’21) ✓ A 95 68.33 66.34
WavLM-Plus [9] (J-STSP’22) ✓ A 95 68.64 67.12
HOG [16] (CVPR’05) × V – – 35.83
AV-HuBERT [74] (arXiv’22) ✓ V 103 – 26.59
RepLAI [64] (NeurIPS’22) ✓ V 15 – 40.72
AVBERT [44] (ICLR’21) ✓ V 37 – 45.80
MAViL [44] (ICLR’21) ✓ V 87 – 43.03
AV-HuBERT [74] (ICLR’22) ✓ A+V 103 – 46.45
AVBERT [44] (ICLR’21) ✓ A+V 43 – 61.87
MAViL [44] (ICLR’21) ✓ A+V 187 – 54.94
HiCMAE-T [77] (IF’24) ✓ A+V 20 66.85 66.62
HiCMAE-S [77] (IF’24) ✓ A+V 46 67.46 67.49
HiCMAE-B [77] (IF’24) ✓ A+V 81 68.21 68.36
AVF-MAE++ (B) ✓ A+V 169 69.53 71.47
AVF-MAE++ (L) ✓ A+V 303 69.86 71.65
AVF-MAE++ (H) ✓ A+V 521 72.71 73.83

Table 16. Performance comparisons of the AVF-MAE++ with
state-of-the-art CEA methods on IEMOCAP.

Method SSL Modality Arousal Valence Dominance
eGeMAPS [20] (TAFFC’15) × A 23.45 8.08 31.15
VGGish [36] (ICASSP’17) × A 22.88 5.69 29.59
HiCMAE-T [77] (IF’24) ✓ A 26.54 12.94 37.88
HiCMAE-S [77] (IF’24) ✓ A 28.40 15.46 37.83
HiCMAE-B [77] (IF’24) ✓ A 30.04 17.63 36.60
HOG [16] (CVPR’05) × V 20.82 52.54 24.76
VGGFace [67] (BMVC’15) × V 7.24 62.96 14.30
SVFAP [78] (TAFFC’24) ✓ V 23.51 67.11 34.61
HiCMAE-T [77] (IF’24) ✓ V 22.45 66.55 33.57
HiCMAE-S [77] (IF’24) ✓ V 23.11 67.05 34.00
HiCMAE-B [77] (IF’24) ✓ V 24.04 67.03 34.91
Zhang et al. [102] (TAFFC’23) × A+V 16.41 63.14 35.40
HiCMAE-T [77] (IF’24) ✓ A+V 30.47 68.50 42.37
HiCMAE-S [77] (IF’24) ✓ A+V 31.08 68.92 41.38
HiCMAE-B [77] (IF’24) ✓ A+V 33.74 69.23 40.66
AVF-MAE++ (B) ✓ A+V 44.33 71.22 52.59
AVF-MAE++ (L) ✓ A+V 43.54 72.09 52.07
AVF-MAE++ (H) ✓ A+V 44.99 72.19 52.35

Table 17. Performance comparisons of the AVF-MAE++ with
state-of-the-art methods on Werewolf-XL.

Method SSL Modality #Params (M) WAR WA-F1

Whisper [69] (ICML’23) × A 1550 63.27 63.23
eGeMAPS [20] (TAFFC’15) × A – 42.88 39.68
VGGish [36] (ICASSP’17) × A – 50.20 48.60
emotion2vec [63] (ACL’24) ✓ A 94 56.48 56.08
Wav2Vec2.0 [1] (NeurIPS’20) ✓ A 95 65.83 65.50
HuBERT [38] (TASLP’21) ✓ A 95 69.43 69.26

EmoNet [42] (JMUI’16) × V – 53.18 51.76
SENet-FER2013 [39] (CVPR’18) × V 28 58.79 57.67
ResNet-FER2013 [34] (CVPR’16) × V 26 59.66 58.73
MANet-RAFDB [108] (TIP’21) × V 51 61.10 59.91
CLIP-base [68] (ICML’21) ✓ V – 62.56 61.74
CLIP-large [68] (ICML’21) ✓ V – 67.17 66.66
EVA-02 [22] (IVC’24) ✓ V 86 62.28 61.41
DINOv2 [66] (arXiv’23) ✓ V – 59.57 58.44
VideoMAE [81] (NeurIPS’22) ✓ V 86 64.93 64.50

HiCMAE [77] (IF’24) ✓ A+V 81 70.95 70.18
AVF-MAE++ (B) ✓ A+V 169 72.11 71.24
AVF-MAE++ (L) ✓ A+V 303 72.33 71.64
AVF-MAE++ (H) ✓ A+V 521 72.28 71.75

Table 18. Performance comparisons of the AVF-MAE++ with
state-of-the-art methods on MER24-T&V.
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Method Venue SSL
SAMM CASME II SMIC CAS(ME)3 MMEW

UAR UF1 UAR UF1 UAR UF1 UAR UF1 UAR UF1

Traditional methods
LBP-TOP [105] T-PAMI’07 × 41.02 39.54 74.29 70.26 52.80 20.00 21.39 21.78 63.61 64.23
Bi-WOOF [53] IMAGE’18 × 51.39 52.11 80.26 78.05 58.29 57.27 – – – –

Deep learning methods
AlexNet [101] IJCNN’22 × 66.42 61.04 83.12 79.94 63.73 62.01 26.34 25.70 – –
GoogLeNet [2] AAAI’16 × 59.92 51.24 64.14 59.89 55.11 51.23 – – – –
STSTNet [54] FG’19 × 68.10 65.88 86.86 83.82 70.13 68.01 37.92 37.95 82.53 80.37
VGG16 [73] Frontiers in Neuroscience’19 × 47.93 48.70 82.02 81.66 59.64 58.00 – – – –
CapsuleNet [88] FG’19 × 59.89 62.09 70.18 70.68 58.77 58.20 – – 68.34 67.62
RCN-A [94] TIP’20 × 67.20 76.01 81.20 85.12 64.40 63.26 38.93 39.28 – –
EMR [55] FG’19 × 71.52 77.54 82.09 82.93 75.30 74.61 36.56 36.13 82.66 81.49
OFF-ApexNet [26] IMAGE’19 × 53.92 54.09 86.81 87.64 66.95 68.17 – – – –
µ-BERT [65] CVPR’23 × 84.75 – 89.14 90.34 83.84 85.50 61.25 56.04 – –
FeatRef [110] PR’22 × 71.55 73.72 88.73 89.15 70.83 70.11 34.13 34.93 – 82.11
Dual-Inception [109] FG’19 × 56.63 58.68 85.60 86.21 67.26 66.45 – – – –
SLSTT-LSTM [103] TAFFC’22 × 64.30 71.50 88.50 90.10 72.00 74.00 – – – –
HTNet [93] Neurocomputing’24 × 81.24 81.31 95.16 95.32 79.05 80.49 54.15 57.67 – 84.33
HiCMAE [77] Information Fusion’24 ✓ – – 90.21 92.03 81.03 80.33 – – – –
AVF-MAE++ (B) – ✓ 80.43 81.58 96.67 93.58 80.56 83.23 61.06 63.18 83.96 83.76
AVF-MAE++ (L) – ✓ 81.55 82.53 96.72 94.03 81.67 83.79 66.02 67.88 85.81 83.41
AVF-MAE++ (H) – ✓ 81.01 81.62 96.54 94.11 81.64 83.55 65.88 65.34 86.23 84.33

Table 19. The comparative results of recently state-of-the-art MER methods with AVF-MAE++ in terms of Unweighted Average
Recall (UAR) and Unweighted F1-score (UF1) on five representive MER datasets. Note that we highlight the best performance in bold
and underline the second performance.

Method SSL Modality #Params (M) UAR WAR

LR+eGeMAPS [20, 43] ✓ A – 50.30 –
LR+wav2vec [1, 43] ✓ A – 68.80 –
Wav2Vec2.0 [1] (NeurIPS’20) ✓ A 95 73.44 74.38
HuBERT [38] (TASLP’21) ✓ A 95 74.15 74.37
WavLM-Plus [9] (J-STSP’22) ✓ A 95 75.28 75.36

VO-LSTM [27] (ACII’19) × V – – 60.50
3D ResNeXt-50 [75] (arXiv’20) × V 26 – 62.99
SVFAP [78] (TAFFC’24) ✓ V 78 75.15 75.01
MAE-DFER [76] (MM’23) ✓ V 85 75.91 75.56

AV-LSTM [27] (ACII’19) × A+V – – 65.80
AV-Gating [27] (ACII’19) × A+V – – 67.70
MCBP [25] (EMNLP’16) × A+V 51 – 71.32
MMTM [41] (CVPR’20) × A+V 32 – 73.12
MSAF [75] (arXiv’20) × A+V 26 – 74.86
ERANNs [89] (PRL’22) × A+V – – 74.80
CFN-SR [24] (arXiv’21) × A+V 26 – 75.76
MATER [28] (ICIP’20) × A+V – – 76.30
MulT [86] (ACL’19) × A+V – – 76.60
AVT [12] (ICPR’22) × A+V – – 79.20
VQ-MAE-AV+
Attn. Pooling [71]

✓ A+V 30 – 83.20

VQ-MAE-AV+
Query2Emo [71]

✓ A+V 30 – 84.80

HiCMAE-T [77] (IF’24) ✓ A+V 20 86.26 86.11
HiCMAE-S [77] (IF’24) ✓ A+V 46 86.85 86.67
HiCMAE-B [77] (IF’24) ✓ A+V 81 87.96 87.99
AVF-MAE++ (B) ✓ A+V 169 85.09 85.07
AVF-MAE++ (L) ✓ A+V 303 86.98 87.22
AVF-MAE++ (H) ✓ A+V 521 87.44 87.57

Table 20. Performance comparisons of the AVF-MAE++ with
state-of-the-art methods on RAVDESS.

Method SSL Modality #Params (M) UAR WA-F1

eGeMAPS [20] (TAFFC’15) × A – – 17.28
VGGish [36] (ICASSP’17) × A – – 40.76
Wav2Vec2.0 [1] (NeurIPS’20) ✓ A 95 51.36 51.48
HuBERT [38] (TASLP’21) ✓ A 95 50.32 52.70
WavLM-Plus [9] (J-STSP’22) ✓ A 95 53.43 54.16
HuBERT-CH [99] (ICASSP’22) ✓ A 95 – 61.16
HiCMAE-T [77] (IF’24) ✓ A 8 48.35 51.33
HiCMAE-S [77] (IF’24) ✓ A 18 51.09 54.16
HiCMAE-B [77] (IF’24) ✓ A 32 51.43 55.33

ResNet-MSCeleb [34] (CVPR’16) × V 26 – 40.32
ResNet-ImageNet [34] (CVPR’16) × V 26 – 44.91
SENet-FER2013 [39] (CVPR’18) × V 28 – 56.69
ResNet-FER2013 [34] (CVPR’16) × V 26 – 57.44
MANet-RAFDB [108] (TIP’21) × V 51 – 56.19
HiCMAE-T [77] (IF’24) ✓ V 8 50.52 58.37
HiCMAE-S [77] (IF’24) ✓ V 18 51.53 59.25
HiCMAE-B [77] (IF’24) ✓ V 32 52.31 59.87

ResNet-FER2013+
HuBERT-CH [51] (MM’23)

✓ A+V 121 – 69.11

MANet-RAFDB+
HuBERT-CH [51] (MM’23)

✓ A+V 146 – 70.32

HiCMAE-T [77] (IF’24) ✓ A+V 20 59.91 68.56
HiCMAE-S [77] (IF’24) ✓ A+V 46 63.18 70.22
HiCMAE-B [77] (IF’24) ✓ A+V 81 64.15 71.33
AVF-MAE++ (B) ✓ A+V 169 64.87 69.56
AVF-MAE++ (L) ✓ A+V 303 66.34 70.79
AVF-MAE++ (H) ✓ A+V 521 68.20 72.26

Table 21. Performance comparisons of the AVF-MAE++ with
state-of-the-art methods on MER-MULTI.
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