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Supplementary Material

In this supplementary material, we provide an in-depth
explanation of aspects in the following that were omitted
from the main paper.
• Section A: We provide additional details on the con-

struction of the AVQACL benchmark and the comparison
methods employed.

• Section B: Additional fine-grained experimental results
and comprehensive ablation studies are provided to fur-
ther validate the effectiveness and superiority of our pro-
posed method.

A. More Details about the AVQACL Bench-
mark

In this paper, we established a novel benchmark for
audio-visual question answering continual learning to study
fine-grained scene understanding and spatial-temporal rea-
soning in videos under a continual learning setting.
Datasets. The benchmark for this study is constructed
from portions of two well-established and representative
datasets in the AVQA domain, namely Split-AVQA and
Split-MUSIC-AVQA. For the Split-AVQA dataset, it en-
compasses six types of audio-visual relationship classes.
Based on the question taxonomy provided in [8], we di-
vided the Split-AVQA dataset into four language-driven
tasks: come from, happening, where, and which. Detailed
data regarding the training, validation, and test sets are
shown in Tab. 1. Subsequently, according to the class of
objects and their corresponding sounds present in the Split-
AVQA dataset, each language-driven task was randomly
and evenly divided into six subtasks. The detailed group-
ing data is presented in Tab. 2.

Similarly, for the Split-MUSIC-AVQA dataset, we fol-
lowed the categorization approach from [4], organizing it
into five language-driven tasks: counting, existential, loca-
tion, comparative, and temporal. Detailed data for the train-
ing, validation, and test sets are shown in Tab. 3. Following
this, based on the class of objects and their corresponding
sounds in the Split-MUSIC-AVQA dataset, each language-
driven task was randomly and evenly divided into 11 sub-
tasks. Detailed grouping data is provided in Tab. 4.
Comparison Methods. To the best of our knowledge, there
is currently no related work in the literature that investigates
continual learning in the context of audio-visual question
answering. Therefore, we selected five representative con-
tinual learning methods from the traditional image classifi-
cation domain, including three regularization-based meth-
ods (LwF [5], EWC [3], MAS [2]) and two rehearsal-based

methods (iCaRL [7], SSIL [1]). Additionally, we included a
multimodal continual learning method designed for audio-
visual classification, AV-CIL [6]. For a fair comparison, all
methods were implemented using official codebases and re-
purposed on our proposed Vanilla framework to adapt to the
audio-visual question continual learning setting.
LwF [5] is a continual learning method that preserves
knowledge from previous tasks by incorporating knowledge
distillation. In LwF, when training on a new task, the model
maintains the predictions for old tasks by adding a distil-
lation loss. This loss encourages the current model to pro-
duce similar outputs for the previous tasks as it did before,
thereby reducing the risk of overwriting previously learned
knowledge. Unlike methods that rely on storing data from
past tasks, LwF only requires the current task’s data, mak-
ing it efficient in terms of memory usage.
EWC [3] is a continual learning method that employs reg-
ularization to preserve knowledge from past tasks. EWC
identifies parameters essential for previous tasks by leverag-
ing the Fisher Information Matrix, which quantifies the im-
portance of each parameter. To prevent significant changes
in these key parameters while learning new tasks, EWC
adds an L2 regularization term. This additional loss penal-
izes adjustments to crucial parameters, helping the model
retain prior knowledge and reduce catastrophic forgetting
as it acquires new information.
MAS [2] is another regularization-based approach designed
to preserve knowledge from prior tasks in continual learn-
ing. MAS achieves this by discouraging significant modi-
fications to parameters critical for previous tasks, using an
additional L2 loss as a penalty. To assess parameter impor-
tance, MAS calculates the sensitivity of the model’s output
function to changes in each parameter, thereby identifying
which parameters should be protected during the training of
new tasks. This approach helps mitigate catastrophic for-
getting by retaining essential knowledge from earlier tasks.
iCaRL [7] is a continual learning approach that com-
bines class-incremental learning with representation learn-
ing. The core idea of iCaRL is to maintain a compact, evolv-
ing model that can incorporate new classes without forget-
ting old ones. It achieves this by storing a small set of repre-
sentative data samples for each class, which are used to up-
date the classifier as new classes are introduced. To prevent
catastrophic forgetting, iCaRL also employs a nearest-class-
mean classifier that assigns labels based on the nearest class
mean in the feature space, rather than recalculating the de-
cision boundaries after each new task. Additionally, iCaRL



Table 1. The data statistics for language-driven tasks in Split-AVQA dataset include the number of videos in the training, validation, and
test sets, as well as examples of question.

Task Train Val Test Question Examples

Come From 9135 1800 1861 What is the source of the sound in the video? What is the main sound source
of the video?

Happening 5093 902 931 What happened in the video? What are the people in the video doing?
Where 3620 712 757 Where did the video take place? Where is the car driving in this video?
Which 11513 2315 2369 What animal appears in the video? What’s driving in the video?

Table 2. The data statistics for language-driven tasks in the Split-MUSIC-AVQA dataset include the number of videos in the training,
validation, and test sets, along with examples of the question.

Task Train Val Test Question Examples

Counting 3304 471 947 How many instruments are sounding in the video? How many instruments in
the video did not sound from beginning to end?

Existential 3134 449 893 Is the accordion in the video always playing? Is this sound from the instrument
in the video?

Location 2477 353 711 Which is the musical instrument that sounds at the same time as the flute? What
is the left instrument of the first sounding instrument?

Comparative 3379 486 972 Is the flute on the right louder than the piano on the left? Is the instrument on
the left more rhythmic than the instrument on the right?

Temporal 2241 320 637 What is the third instrument that comes in? Which instrument makes sounds
after the piano?

Table 3. The detailed grouping data statistics for each subtask under each language-driven task in the Split-AVQA dataset, encompassing
120 distinct objects and their corresponding sound classes.

Subtask class

1

wind rustling leaves, splashing water, sheep bleating, horse clip-clop, skateboarding, dog whimpering, pig
oinking, waterfall burbling, using sewing machines, lions roaring, bull bellowing, cap gun shooting, tornado
roaring, coyote howling, cat purring, car engine starting, rowboat, hammering nails, train horning, volcano
explosion

2

typing on typewriter, dog bow-wow, underwater bubbling, running electric fan, canary calling, bird squawk-
ing, cat hissing, black capped chickadee calling, penguins braying, spraying water, motorboat, car passing
by, train wheels squealing, vehicle horn, bee, subway, pheasant crowing, airplane, bowling impact, civil
defense siren

3
driving snowmobile, otter growling, machine gun shooting, sailing, donkey, car engine knocking, pigeon,
chicken crowing, hail, fox barking, frog croaking, cat growling, cattle mooing, skiing, helicopter, sea lion
barking, barn swallow calling, roller coaster running, elephant trumpeting, turkey gobbling

4
train whistling, race car, pumping water, snake rattling, engine accelerating, sloshing water, magpie calling,
police car, wood thrush calling, ice cream truck, wind chime, driving buses, cow lowing, mynah bird
singing, warbler chirping, lions growling, reversing beeps, beat boxing, chicken clucking, ambulance siren

5
owl hooting, lighting firecrackers, dog howling, horse neighing, rope skipping, squishing water, chopping
food, alligators, railroad car, cat meowing, dog growling, plastic bottle crushing, driving motorcycle, rain-
ing, scuba diving, electric shaver, printer printing, gibbon howling, sea waves, airplane flyby

6

toilet flushing, fireworks banging, lathe spinning, goose honking, wind noise, lawn mowing, whale calling,
snake hissing, chipmunk chirping, fire truck siren, duck quacking, cattle, crow cawing, stream burbling,
planing timber, tractor digging, vacuum cleaner cleaning floors, dog barking, people eating apple, bird
chirping



Table 4. The detailed grouping data statistics for each subtask under each language-driven task in the Split-MUSIC-AVQA dataset, covering
22 different musical instruments and their corresponding sound classes.

Subtask 1 2 3 4 5 6 7 8 9 10 11

class
bagpipe
ukulele

suona
erhu

cello
congas

guitar
trumpet

bassoon
xylophone

tuba
violin

flute
guzheng

bass
accordion

drum
clarinet

pipa
banjo

saxophone
piano

uses a loss function that encourages the model to preserve
the representation of old classes while learning new ones,
facilitating the continual learning process.
SSIL [1] is a continual learning approach that leverages
self-supervised learning techniques to enable incremental
task learning without forgetting previous knowledge. The
method generates useful representations from unlabeled
data by solving auxiliary tasks, such as contrastive learn-
ing, which helps in learning task-agnostic features. These
representations are updated incrementally as new tasks are
introduced, allowing the model to learn without the need for
storing old data. By focusing on self-supervised objectives,
SSIL reduces memory usage and mitigates catastrophic for-
getting, making it an efficient solution for continual learn-
ing.
AV-CIL [6] is a multimodal continual learning approach de-
signed to handle the challenges of learning from both audio
and visual data over time. AV-CIL introduces two inno-
vative components. First, the Dual-Audio-Visual Similarity
Constraint (D-AVSC) ensures both instance-level and class-
level semantic similarity between audio and visual features,
facilitating robust joint learning. Second, the Visual Atten-
tion Distillation (VAD) mechanism retains audio-guided vi-
sual attention capabilities, preventing the forgetting of pre-
viously learned cross-modal correlations. The method com-
bines audio and visual information to learn incrementally
without forgetting previous tasks. This allows the model to
adapt to new tasks while maintaining high performance on
previous ones, making it particularly useful for applications
involving dynamic audio-visual data streams.

B. More Experimental Results and Ablation
Study

B.1. More Experimental Results

We provide more fine-grained experimental results on the
Split-AVQA and Split-MUSIC-AVQA datasets. As shown
in Tab. 5, the experimental results for the average accuracy
and average forgetting rate of subtasks under the ”where”
language-driven task on the Split-AVQA dataset are pre-
sented, comparing our proposed method with six repur-
posed methods. From the table, it can be observed that
our method achieves the best average accuracy in every
subtask and nearly the best performance in terms of av-
erage forgetting rate. Fig. 1 presents the experimental re-

sults for the average accuracy and average forgetting rate of
subtasks under the ”comparative” language-driven task on
the Split-MUSIC-AVQA dataset. From the figure, it is ev-
ident that the average accuracy and average forgetting rate
fluctuate during the testing of subtasks across all methods.
These fluctuations may be attributed to factors such as inter-
subtask interference and the inherent multimodal complex-
ity of audio-visual question answering data, which can in-
troduce challenges in balancing feature learning and fusion.
However, our proposed method achieves competitive results
in the majority of subtasks.
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Figure 1. Fine-grained experimental results on Split-MUSIC-
AVQA datasets (a) the mean accuracy for each subtask (b) the
mean forgetting for each subtask.

B.2. More Ablation Study
Effect of Input Modality. In this section, we detail the con-
tinual learning experimental results of our proposed method
across three distinct input modalities: audio question an-
swering, visual question answering, and audio-visual ques-
tion answering. Fig. 2 provide a comprehensive comparison
of the mean accuracy and average forgetting rate achieved
by the proposed method on the Split-AVQA and Split-
MUSIC-AVQA datasets for these modalities. The results
clearly demonstrate that, the integration of both audio and
visual modalities leads to significant improvements in the
inference performance of the method under the continual
learning setting. Additionally, this multimodal approach ef-
fectively reduces the forgetting rate, enabling the model to
retain a larger proportion of previously acquired knowledge.
This highlights the advantages of leveraging multimodal in-
formation in enhancing the robustness and generalizability
of continual learning models.
Effect of Frames per Video. To investigate the effect of
the total number of sampled frames per input video on the
testing performance of the proposed model, we conducted



Table 5. Fine-grained experimental results on Split-AVQA dataset. MA represents mean accuracy, while AF denotes average forgetting

Method Subtask-1 Subtask-2 Subtask-3 Subtask-4 Subtask-5 Subtask-6
MA AF MA AF MA AF MA AF MA AF MA AF

LwF 15.63 34.10 14.08 31.86 11.33 33.37 6.00 32.67 5.7 33.40 7.95 29.69
EWC 2.07 55.84 4.33 48.06 4.32 47.51 6.79 42.30 6.61 42.93 8.45 39.65
MAS 20.04 11.63 19.13 11.59 17.17 12.36 16.66 11.57 16.12 10.57 15.18 10.08
iCaRL 1.25 60.19 4.56 49.59 6.06 45.52 6.91 44.27 8.19 40.54 9.35 39.02
SSIL 30.94 4.63 27.86 5.40 27.29 5.24 25.78 5.36 25.50 4.67 24.26 4.54

AV-CIL 27.94 4.05 26.00 4.05 25.37 3.79 23.33 4.31 23.04 4.03 21.81 3.95
Ours 31.32 4.39 30.07 4.12 28.46 4.87 27.32 4.35 26.41 4.23 25.50 4.00
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Figure 2. Effect of input modality. (a) the mean accuracy on Split-
AVQA, (b) the average forgetting on Split-MUSIC-AVQA dataset,
(c) the mean accuracy on Split-MUSIC-AVQA dataset and (d) the
average forgetting on Split-MUSIC-AVQA dataset.

frame count ablation experiments on both datasets. Specif-
ically, for the Split-AVQA dataset, we set the number of
input video frames per video to 2, 4, 6, 8, and 10, based on
the varying lengths of the videos. Similarly, for the Split-
MUSIC-AVQA dataset, the input frame counts were set to
6, 10, 20, 30, and 60. The experimental results are shown in
Fig. 3, where it can be observed that the proposed method
achieves the best average accuracy and the lowest average
forgetting rate when the number of input frames per video
is set to 10 for both datasets. Consequently, we adopted 10
input frames per video as the default setting in our experi-
ments for both datasets.
Effect of Task Order. As shown in Fig. 4, we present the
testing results of our proposed method on the Split-AVQA
and Split-MUSIC-AVQA datasets when trained under dif-
ferent order of language-driven tasks. The figure reveals
that the order of language-driven tasks significantly impacts
the model’s average accuracy and average forgetting rate. A
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Figure 3. Effect of frames per video. (a) the mean accuracy on
Split-AVQA, (b) the average forgetting on Split-MUSIC-AVQA
dataset, (c) the mean accuracy on Split-MUSIC-AVQA dataset and
(d) the average forgetting on Split-MUSIC-AVQA dataset.

plausible explanation for this observation lies in the vary-
ing levels of complexity among different language-driven
tasks. For instance, tasks such as existential or comparative
queries are relatively straightforward, as their answers are
typically binary (e.g., ”yes” or ”no”). In contrast, tasks like
counting or spatiotemporal reasoning are inherently more
complex and diverse in their answers, requiring the model
to perform higher-order reasoning to generate accurate re-
sponses.

This disparity in task complexity could lead to differ-
ences in the way the model learns and retains knowledge
across task sequences, emphasizing the importance of care-
fully designing the order of tasks in continual learning set-
tings to optimize overall performance. Such insights high-
light the potential challenges of balancing task complex-
ity and sequence effects in audio-visual question answering
continual learning frameworks.
Effect of Class Number. In this section, we investigate the



Table 6. The experimental results of our proposed method and the comparison methods under different class numbers.

Method
Split-AVQA Split-MUSIC-AVQA

6 classes × 20 subtasks 20 classes × 6 subtasks 2 classes × 11 subtasks 11 classes × 2 subtasks
MA AF MA AF MA AF MA AF

Vanilla 18.34 40.94 10.24 42.66 28.79 33.17 33.24 34.89
LwF 21.53 30.49 10.95 34.70 30.93 30.14 34.12 32.13
EWC 18.89 40.69 10.28 44.34 28.76 32.58 33.74 34.02
MAS 24.47 8.91 10.93 37.29 29.33 31.15 33.16 33.22
iCaRL 25.28 33.76 15.03 43.00 28.46 33.16 32.93 34.61
SSIL 30.05 2.68 33.75 4.78 32.16 28.05 36.00 24.86

AV-CIL 27.49 2.91 33.59 5.34 31.22 29.65 34.20 28.47
Ours 32.05 2.47 34.37 3.31 33.64 27.08 36.50 24.44

Upper Bound 55.42 - 54.51 - 65.57 - 66.35 -
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Figure 4. Effect of task order. (a) the mean accuracy on Split-
AVQA, (b) the average forgetting on Split-MUSIC-AVQA dataset,
(c) the mean accuracy on Split-MUSIC-AVQA dataset and (d) the
average forgetting on Split-MUSIC-AVQA dataset.

effect of varying the number of object-sound class within
each language-driven subtask on the performance of the
proposed method and baseline approaches. Specifically, we
modified the subtask learning setups in the Split-AVQA and
Split-MUSIC-AVQA datasets from the original configura-
tions of 6 classes × 20 subtasks and 2 classes × 11 subtasks
to 20 classes × 6 subtasks and 11 classes × 2 subtasks, re-
spectively.

As shown in Tab. 6 our proposed method consistently
achieves the best performance across both datasets and un-
der both subtask configurations. These results highlight the
effectiveness and generalizability of the proposed approach,
demonstrating its robustness in handling varying class dis-
tributions and subtask complexities within multimodal con-
tinual learning settings.
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