AffordDP: Generalizable Diffusion Policy with Transferable Affordance
Supplementary Materials

A. Overview

This supplementary document provides additional informa-
tion, results, and visualizations to supplement the main pa-
per. Specifically, we include:

¢ Details on data collection;

¢ Information about the experimental setup;

¢ Descriptions of training and inference procedures;
» Additional experiment results.

B. Demonstration Collection

In this section, we provide a detailed explanation of our
demonstration collection process, encompassing both sim-
ulation and real-world environments.

B.1. Simulation Data Collection

We employ CuRobo [32] as our motion planner. Given the
world coordinates of the robot’s base and the target end-
effector pose, CuRobo is capable of computing a feasible
robotic motion trajectory. Then we utilize the bounding
boxes of the annotated parts provided by GAPartnet [11]
to calculate the grasping center and the pull direction post-
grasping. We further plan a set of waypoints along the com-
puted pulling direction. By combining these waypoints with
the rotational components of the grasp center, we leverage
CuRobo to calculate a series of feasible robot action se-
quences. We place an RGBD camera in the simulation en-
vironment, and the entire trajectory is recorded using this
camera.

B.2. Real-world Data Collection

Expert demonstrations are collected via the teleoperation
system, where a human operator controls the system and
the camera records the entire process, including RGB im-
age and depth information, shown as in Fig. 5. We use a Re-
alSense D455 RGBD camera to capture point cloud streams
at a resolution of 640 x 480. We perform hand-eye calibra-
tion in the real world. The calibration process enabled us to
accurately determine the transformation relationship from
the camera coordinate system to the robot base coordinate
system. Then, we utilize the camera intrinsic parameters
and this transformation matrix to convert the RGB-D im-
ages into point clouds in the robot’s base coordinate system,
which facilitates subsequent policy inference.
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Figure 5. Real world experiment setup.

C. Experiment Details
C.1. Setup

During the data collection process, we introduced varying
levels of random noise to the initial positions and rotations
of the objects, as well as to the initial position of the robotic
arm. Here is the unified equation to represent the noise in-
jection process.

o =2+ 2N(0,1) - £ (14)

The magnitudes of these random noises £ correspond to dif-
ferent difficulty levels, as summarized in Tab. 6. For the
unified policy training in simulation, we construct datasets
using the Easy level. We summarize object categories and
the number of object instances in Tab. 7.

Hard Median Easy

Robot Position Noise | 0.1 0.05 0.025
Robot Dof Noise 0.1 0.05 0.025

Object Position Noise | 0.05 0.05 0.01

Table 6. Noise levels for different difficulty settings during data
collection: Hard, Median, and Easy. The noise values represent
the amount of random noise introduced to the robot’s position,
degrees of freedom, and object position.

We provide additional visualizations for our objects in
real-world tasks, shown in Fig. 6. We visualize all the seen
instances, unseen instances, and unseen categories.

C.2. Training

We employ a convolutional network-based diffusion model
as the backbone. The visual input consists of a point cloud
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Figure 6. Objects used in Real-World Tasks, including the seen instances, unseen instances, and unseen categories.
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Figure 7. Visualizations of different unseen scenes. We deployed our policy to a real-world kitchen environment in a zero-shot manner,

and it still demonstrated commendable generalization.

Task Category ~ Task Name  #Train Instances  #Test Instances
Simulation OpenDoor > 3
PullDrawer 5 5
OpenDoor 4 4
Real-world PullDrawer 4 4
Pick&Place 4 4

Table 7. Number of training and testing instances for different
tasks under the unified policy training setting. Simulation tasks in-
clude OpenDoor and PullDrawer, with 5 training instances and 5
testing instances each. Real-world tasks include OpenDoor, Pull-
Drawer, and Pick&Place, with 4 training instances and 4 testing
instances each.

without colors, which is downsampled from the raw point

cloud using Farthest Point Sampling (FPS). We consistently
use 4096 points for all simulated and real-world tasks. The
representations encoded from point clouds, robot poses, and
affordances are concatenated to form a unified representa-
tion with a dimension of 256. The policy in the real world
is trained on a single A100 40GB GPU for two days. Hy-
perparameters related to policy training are shown in Tab. 8.

C.3. Inference

During inference, AffordDP retrieves the most similar ob-
ject from the affordance memory and transfers its static and
dynamic affordances to the target object. Subsequently, the
affordance, visual observation, and robot proprioception are



Hyperparameter Default
Num epochs 4000
Batch Size 128
Horizon 16
Observation Steps 2
Action Steps 8
Num points 4096
Affordance MLP size [64,64]
Affordance transformer size 64
Num attention heads 4
Num attention layers 4
Num train timesteps 500
Num inference steps 10
Learning Rate (LR) 1.0e-4
Weight decay 1.0e-6

Table 8. Hyperparameters of Policy Network.

fed into the policy network to predict the action. The action
is then fed into the low-level controller to operate the robot.
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Figure 8. Spatial generalization with 30 expert demonstrations.
We evaluate the performance across 1000 random positions in the
3D space. Expert demonstrations are marked as e, and success-
ful trials are marked as . In the PullDrawer task, DP3 only suc-
ceeds in regions close to the expert demonstrations. In contrast,
our method generalizes effectively, covering a broader range of
3D space, including regions not represented in the expert demon-
strations.

C.4. Evaluation

Here we list the evaluation criteria for each task:

e OpenDoor (sim): The task is considered successful if the
robotic arm accurately grasps the specific door handle and
opens the door to an angle of 30 degrees.

¢ PullDrawer (sim): The task is considered successful if the
robotic arm accurately grasps the specific drawer handle
and extends the drawer by a distance of 0.15 meters.

e OpenDoor: The task is considered successful if the
robotic arm accurately grasps a specific door handle and
actuates the door to a predetermined angular displace-
ment.

e PullDrawer: The task is considered successful if the

robotic arm accurately grasps a specific drawer handle
and extends the drawer along a defined linear distance.

* Pick&Place: The task is considered successful if the
robotic arm accurately grasps a specific region of the ob-
ject and places the object onto a designated storage rack.

D. Additional experiment results
D.1. Spatial Generalization

Following DP3 [41], we utilized PullDrawer as our bench-
mark task in simulation, providing 30 demonstrations (vi-
sualized by e). We randomly initialized the positions of the
objects and conducted 1,000 evaluations (successful posi-
tions are visualized by e), shown in Fig. 8. The number
of successful trials using DP3 is 65, whereas our approach
achieved 170 successful trials.

D.2. More Real World Experiments

We give the real-world results for each object in Tab. 9,
which is supplementary to Tab. 4 in our main paper.

D.3. Semantic correspondence model selection

We compared several foundational vision models (CLIP,
DINOv2, SD, and SD-DINOvV2) and provided qualita-
tive results on semantic correspondence transfer, shown as
Fig. 9. The lack of sufficient semantic understanding in
CLIP can lead to incorrect semantic correspondence trans-
fer. Similarly, the SD model also exhibits transfer errors in
certain tasks. In comparison to DINOv2 and SD, the SD-
DINOvV2 model demonstrates greater stability and exhibits
smaller errors in the transfer of static affordance within the
pixel space.

D.4. Unseen scene generalization

To further demonstrate the generalization capability of our
method, we applied the policy zero-shot transfer to unseen
scenes(kitchen environment), as shown in Fig. 7. We recal-
ibrated the camera and cropped the extraneous points from
the point cloud to execute our policy. Surprisingly, despite
the stark contrast with our training scene, our method still
demonstrated robust generalization capabilities. Please re-
fer to our project website for detailed videos.

E. Limitations

The limitations of our method are mainly two-fold: scenar-
i0os where foundation models fail, such as severe occlusion
or visual distortion; and tasks requiring precise force con-
trol where affordance extraction is difficult, like grasping
eggs without breaking it.



Open Door

Methods | Cabinet 1 Cabinet2 Cabinet3 Cabinet 4 ‘ Cabinet 8 Cabinet 9 ‘ Microwave Oven  Refrigerator
DP 0/10 0/10 0/10 0/10 0/10 0/10 0/10 0/10
DP3 3/10 2/10 3/10 0/10 0/10 0/10 6/10 0/10
Ours 6/10 8/10 10/10 8/10 6/10 4/10 6/10 4/10

Pull Drawer
Methods | Cabinet5 Cabinet6 Cabinet7 Cabinet 3 | Cabinet 9  Cabinet 10 | Dressing Table Oven

DP 0/10 0/10 0/10 0/10 0/10 0/10 0/10 0/10
DP3 1/10 0/10 0/10 3/10 0/10 0/10 2/10 0/10
Ours 6/10 5/10 7/10 9/10 5/10 4/10 5/10 3/10
Pické&Place

Methods | Cup 1 Cup 2 Cup 3 Cup 4 | Cup 5 Cup 6 | Bowl Pan

DP 0/10 0/10 0/10 0/10 0/10 0/10 0/10 0/10

DP3 6/10 3/10 2/10 5/10 3/10 3/10 0/10 3/10

Ours 6/10 6/10 5/10 4/10 6/10 7/10 4/10 6/10

Table 9. Success rates of different methods on real-world tasks. We evaluated the performance of different methods on various objects.

Source Image CLIP DINOv2 SD-DINOv2

Figure 9. Comparison of semantic correspondence transfer among different foundational models. Red points e represent the static affor-
dance and its corresponding transferred results.
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