
BG-Triangle: Bézier Gaussian Triangle for 3D Vectorization and Rendering

Supplementary Material

1. Implementation Details
Code Release We built upon the 3DGS [3] code base to
add discontinuity-aware rendering and corresponding accel-
eration algorithms in the CUDA rendering code. We used
PyTorch [4] to implement the proposed rendering pipeline.
Our code will be made publicly available to the community
once the paper is accepted.

Point Cloud Initialization Our method can be initialized
using either a mesh or a coarse point cloud. Generally, point
clouds are easier to obtain compared to meshes. A coarse
point cloud can be generated from MVS [1] algorithms, 3D
scanners, or even 3DGS. In our experiments, for each scene,
the point cloud we used was derived from the reconstruction
result of the 3000th iteration of 3DGS. We randomly sam-
pled 10,000 points from this result to form the initial point
cloud. On each point in the initial point cloud, we placed
equilateral triangle primitives with different orientations but
the same size as the initialization result.

Cube Initialization BG-Triangle can reconstruct scenes
initialized from a cube (Fig. 1). During optimization, BG-
Triangles dynamically ‘grow’ and ‘contract’ to conform to
the shape of the 3D scene.

Optimization with cube initialization requires more it-
erations to match the reconstruction quality of point-cloud
initialization and is more sensitive to hyperparameters (e.g.,
learning rates). Since point clouds are easily generated from
multi-view images during calibration, we use point cloud
initialization in our experiments.

Figure 1. The visualization of cube initialization of the training
progress on the Lego scene from the NeRF-Synthetic dataset.

Multi-Resolution Attribute maps. In our implementa-
tion, the attribute map of each primitive is a multi-channel
grid shaped as an isosceles right triangle, with the pixel res-
olution of the legs being 3, except the SH attribute map
whose resolution is 1. The number of channels in the at-
tribute map corresponds to the original dimension of the re-
spective attribute.

Splitting and Pruning. Splitting and pruning are essen-
tial for Bézier Gaussian Triangles (BG-Triangles) to effec-
tively represent a scene. The splitting and pruning strategy
is performed every 300 iterations and is disabled after the
15,000th iteration to stabilize the optimization process.

For splitting, we follow two pre-defined criteria: posi-
tion gradient amplitude and edge prior. We compute the
position gradient for each BG-Triangle. If the average po-
sition gradient of a BG-Triangle exceeds τg = 0.0018, the
region is considered under-reconstructed. Using the index
map Iid, we map the edge gradients of the image to the cor-
responding BG-Triangle and accumulate their values. If this
accumulated average exceeds τb = 13.0, it indicates that the
BG-Triangle may be crossing a boundary. In either case, we
subdivide the BG-Triangle into four smaller BG-Triangles
by splitting it at the midpoints of its edges.

For pruning, we follow three pre-defined criteria: visi-
bility, area, and aspect ratio of the primitives. Using the
index map Iid, the visibility count of each BG-Triangle is
tracked. When the average visibility count ratio falls be-
low τv = 0.08, the BG-Triangle is considered occluded. To
further evaluate visibility, we maintain a visibility texture
for each BG-Triangle. Using the coordinate map Iuv , the
UV coordinates are mapped to the visibility texture, and the
proportion of visible area is calculated. If the visibility ratio
falls below τr = 0.4, the BG-Triangle is also considered oc-
cluded. Additionally, Bézier triangles with an area smaller
than τa = 3× 10−4 or with an excessively elongated shape
(aspect ratio above τs = 10) are considered insignificant
or noisy. The area is estimated by approximating the BG-
Triangle as four planar triangles and summing their areas,
while the aspect ratio is determined by computing the as-
pect ratio of the bounding box of BG-Triangle. In any of
these cases, the corresponding BG-Triangles are pruned.

2. Additional Results
Reconstruction Quality We compare the reconstruction
quality using Chamfer Distance on the NeRF-Synthetic
dataset between our method and 2DGS [2] under its default
settings for bounded scene, with the downsampling density
set to 0.2. As shown in Table 1, our method achieves com-
parable results to 2DGS.

Applications The 3D vector representation reconstructed
by BG-Triangle from multi-view images shows a cluster-
ing effect at the geometric and texture boundaries. In other
words, there is a relatively dense distribution of primitives
at the boundaries. By leveraging this distribution character-



Chair Drums Ficus Hotdog
2DGS 0.0645 0.0675 0.0667 0.0693
Ours 0.0722 0.0592 0.0535 0.0642

Lego Material Mic Ship
2DGS 0.0581 0.0540 0.0629 0.0735
Ours 0.0597 0.0561 0.0628 0.0786

Table 1. Reconstruction quality comparisons on NeRF-Synthetic
Dataset.

Figure 2. 3D line strokes extracted from dense boundary primi-
tives reveal rich contour information and semantic features of the
scene.

istic, we can extract the 3D line strokes at the boundaries by
filtering out tessellated primitives based on their face area
and removing those with areas that are too large. As shown
in the Fig. 2, the 3D line strokes allow us to easily distin-
guish the content of the scene, indicating that these 3D line
strokes contain rich contour information and exhibit certain
semantic features.

3. Backward Derivative
We follow the notations defined in Sec. 3.

Derivative of Gradient in Discontinuity-aware Alpha
Blending. The alpha value with blending coefficient is:

α(q) = o · w(q) · exp
(
−1

2
(q− µ)⊤Σ−1(q− µ)

)
(1)

where µ is the 2D position of the Gaussian G, Σ is the 2D
covariance matrix, o is a constant scalar. In alpha blending,
the final color is computed as:

C =

n−1∑
i=0

Tiαici + Tncbg (2)

where cbg is the background color, ci is the color associated
with each Gaussian Gi, Ti is the transparent term, defined
as:

Ti =

i−1∏
j=0

(1− αj), T0 = 1 (3)

The gradient of the loss ℓ with respect to color ci is given
by:

∂ℓ

∂ci
=

∂ℓ

∂C

∂C

∂ci
=

∂ℓ

∂C
Tiαi. (4)

The gradient of ℓ with respect to alpha αi is:

∂ℓ

∂αi
=

∂ℓ

∂C

∂C

∂αi

=
∂ℓ

∂C

n−1∑
j=0

∂Tj

∂αi
αjcj + Tj

∂αj

∂αi
cj

+
∂Tn

∂αi
cbg


=

∂ℓ

∂C

Tici −
1

1− αi

 n−1∑
j=i+1

Tjαjcj + Tncbg

 .

(5)
The gradient of ℓ with respect to w is:

∂ℓ

∂w
=

∂ℓ

∂α

∂α

∂w
=

∂ℓ

∂α

α

w
. (6)

Boundary pixels, denoted as B, are derived from the in-
dex map Iid, which is ultimately determined by the con-
trol points of Bézier triangles. To account for these bound-
ary pixels, we calculate the gradient of ℓ with respect to a
boundary pixel b ∈ B:

∂ℓ

∂b
=

∂ℓ

∂w

∂w

∂b

=


0 if Iid(b) <> e,
∂ℓ

∂w
γ′(∥q− b∥;σ) q− b

∥q− b∥
if Iid(b) = Iid(q)

− ∂ℓ

∂w
γ′(∥q− b∥;σ) q− b

∥q− b∥
otherwise

(7)
where

γ′(∥q− b∥;σ) = ln 2

σ
2

∥q−b∥
σ −1

=
ln 2

σ
γ(∥q− b∥;σ).

(8)

Other factors related to the attributes of the Gaussian G
can be handled automatically by the 3DGS framework, and
are therefore omitted here for brevity.

Derivative of Gradient in Sub-primitive Generation.
Both the 3D position Sq and the diffuse color cq of the
Gaussian G can be interpolated barycentrically by the con-
trol points. Taking the 3D position Sq as an example,
the gradient of the loss ℓ with respect to a control point
pi,j,k(Iid(q)) is given by:

∂ℓ

∂pi,j,k(Iid(q))
=

∂ℓ

∂Sq

∂Sq

∂pi,j,k(Iid(q))

=
∂ℓ

∂Sq
Bn

i,j,k(Iuv(q)).

(9)

where Bn
i,j,k is the Bernstein polynomial of degree n de-

fined on the barycentric coordinate system.



Figure 3. Additional results of our BG-Triangle.

4. Result Gallery
We provide additional results of our BG-Triangle in Fig. 3.

5. Comparison Setup
We first set an upper control on the number of primitives for
different methods based on a predefined parameter scale.
Starting with sparse point clouds, we optimize and proceed
to the splitting phase. During this phase, we check the total
number of primitives after splitting. If the total number re-
mains within the control, we keep the splitting results. If it
exceeds the control, we randomly select newly added prim-
itives, ensuring the total number adheres to the control.

In addition, pruning operations for each method remain
enabled to dynamically adjust the primitive distribution ef-
fectively. When pruning, we disable pruning large Gaussian
primitives to ensure that different methods can fit the over-
all structure of the object. This approach balances dynamic
adjustments with fitting precision.

6. Limitations
Similar to the vectorization process for 2D images, which
often entails a loss of image quality, the representations re-
constructed and rendered using our method exhibit a qual-
ity that remains slightly below that achieved by state-of-
the-art novel view synthesis techniques. At the same time,
our approach, which generates only a single layer of sub-

primitives, cannot handle materials with opacity.

References
[1] Michael Goesele, Noah Snavely, Brian Curless, Hugues

Hoppe, and Steven M. Seitz. Multi-view stereo for commu-
nity photo collections. In 2007 IEEE 11th International Con-
ference on Computer Vision, pages 1–8, 2007. 1

[2] Binbin Huang, Zehao Yu, Anpei Chen, Andreas Geiger, and
Shenghua Gao. 2d gaussian splatting for geometrically accu-
rate radiance fields. In SIGGRAPH 2024 Conference Papers.
Association for Computing Machinery, 2024. 1

[3] Bernhard Kerbl, Georgios Kopanas, Thomas Leimkühler, and
George Drettakis. 3d gaussian splatting for real-time radiance
field rendering. ACM Transactions on Graphics, 42(4), 2023.
1

[4] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer,
James Bradbury, Gregory Chanan, Trevor Killeen, Zeming
Lin, Natalia Gimelshein, Luca Antiga, et al. Pytorch: An
imperative style, high-performance deep learning library. Ad-
vances in neural information processing systems, 32, 2019. 1


	Implementation Details
	Additional Results
	Backward Derivative
	Result Gallery
	Comparison Setup
	Limitations

