CAT4D: Create Anything in 4D with Multi-View Video Diffusion Models

Supplementary Material

A. Method Details

Diffusion Model We initialize our model from
CAT3D [17], with the additional MLP layers in the
new timestamp embedding randomly initialized. All
timestamps ¢ € T U T (of each set of M + N frames)
are normalized within range [0, 1] and are relative to the
first timestamp T, We fine-tune the full latent diffusion
model (i.e., the denoising U-Net) with M = 3 input views
and N = 13 target views for 2.0M iterations with a batch
size of 128 and a learning rate of 5 x 10~°. For the 4D
reconstruction application, in order to condition on more
input frames, we further fine-tune the model with M = 9
input views and N = 8 target views for 20K iterations.

Sampling For all of our experiments, we use DDIM [64]
with 25 sampling steps and classifier-free guidance weights
s1 = 3.0, s9 = 4.5. Our alternating sampling strategy takes
about 1 minute to generate all K’ = 128 views for each
timestamp, when executed in parallel on 16 A100 GPUs.
We note that CAT3D originally use 50 DDIM steps, yet for
our model we found that 25 steps work just as well—and
using fewer steps reduces the runtime of our sampling strat-
egy.
Camera Trajectory Selection The choice of camera tra-
jectories where we generate novel views has a large impact
on the quality of 4D creation. In principle, the camera tra-
jectories should cover the viewpoints where we want to ren-
der the scene after reconstruction. We design the novel-
view camera trajectory based on the camera trajectory of
the input video:

e For input videos with sufficient view coverage (e.g.,
videos from DyCheck [16] whose cameras are centered
around a focus point), we simply sample views on the in-
put camera trajectory.

* For input videos with a forward-moving camera trajec-
tory, we sample novel views from a spiral path around the
input camera trajectory.

* For input videos with little or no camera movement, we
sample novel views from either a spiral path that moves
into and out of the scene or a orbit path that spins around
the central object. For each example, we run both, and se-
lect the one which is most appropriate for the given scene.

See Fig. 10 for an illustration of different types of camera

trajectories.

Sparse-View Bullet-Time 3D Reconstruction The con-
ditional times T should in principal be the actual times-
tamps of the input frames, but they may not be known for
unstructured in-the-wild datasets. We found that in practice

the model works well if we just set the timestamps for the
bullet-time frame as 0 and other frames as 1.

4D Reconstruction We build our reconstruction pipeline
on top of 4D-GS [72] with several extensions. We use a
combination of L1, DSSIM and LPIPS for the photometric
reconstruction loss, with weighting factors 0.8, 0.2 and 0.4
respectively, and keep all regularization terms from [72] as
is. We set the 3D Gaussians’ densification threshold (mag-
nitude of view-space position gradients) to 0.0004, and use
a batch size of 4 (images). We initialize the 3D Gaussians
with points from SfM [63] or MonST3R [85]. When SfM
or MonST3R points are not available, e.g., input videos of
a static viewpoint, we use uniformly random points for ini-
tialization. We first optimize only the canonical-space 3D
Gaussians with all generated images at ¢ = 0 for 2000 iter-
ations, then jointly optimize both the 3D Gaussians and the
deformation field with images at all timestamps for 18000
iterations. After the first 2000 iterations, we linearly anneal
the multiplier of reconstruction loss for our generated im-
ages from 1.0 to 0.5 while keeping the multiplier for real
input images fixed to 1.0. The optimization takes about 25
minutes on a single A100 GPU.

B. Datasets Details

For Objaverse [12], we use only the animated assets filtered
by [38] (around 42k in total). We render each asset un-
der 4 different lighting conditions (randomly sampled en-
vironment maps). For each lighting condition, we render
synchronized videos of 8 frames at 8 evenly spaced view-
points on the 360° orbit path. For Kubric [19], we randomly
generate 4k scenes using their generator. For each scene,
we render synchronized videos of 8 frames at 8 viewpoints
evenly spaced on a smooth camera path that is randomly
sampled on the upper hemisphere. When drawing samples
from these two synthetic 4D datasets, we sample the input
and target views according to different combinations in Ta-
ble | with equal probability.

For data samples from all multi-view image datasets [35,
54, 82, 94], we set all timestamps T U T to zero.

For our video dataset, we filter it to contain only videos
of at static viewpoint. We perform this filtering by checking
if the four corner patches (size 10 x 10) of each video are
nearly constant over time. Concretely, we compute for each
corner patch the L2 distance between consecutive frames
(averaged over time), and then check if the maximum of the
four is smaller than 0.05. While this simple strategy some-
times yields false positives, it’s sufficiently effective and can
be run on the fly. For samples from this dataset, we ran-

so-

B — 0
of T ? °
T s ° S -

sy y

1 -y u Y
~ N 3 ~N 7~
-~ oY . ~ S
N N - . w -~ ~a =
0.5 ~J . - - ~w. -3
= - 44 «‘ -
- .o - -
= ~~ - == -
z 0 ol - ~ -- ™
- - - . <o - _ -
X - » al o balh |
_05 - 22 A . " — = - =
- » < . - -
.- '»:»,’. » - - - - <
h I - W = W
- s, 1

0° S0 hi 0

0.
0
50
i

Yy

¢) videos of a static viewpoint, forward

50~
0o N
<0

0

~o0s

R
S ~z o, 0 i

b) videos with a forward-movin;g camera path

Y °

0o o5 T 2 e

R 7 Yy
d) videos of a static viewpoint, orbit

Figure 10. Camera trajectories (where we generate novel views) for different types of input videos. Within each panel, we show the
trajectories from two different viewpoints. The input views are colored red, and the anchoring sample views are colored blue with the
remaining sample views are colored by their index. For videos with sufficient view coverage (a), we only generate anchor views picked

from the input camera trajectory.

domly shuffle the order of frames and set all camera param-
eters P<"UP'e! to be the same with a central principal point
and a random focal length sampled from [0.8-512, 1.2-512].

We use Lumiere [7] to augment the CO3D dataset [54]
as follows (4-th row in Table 1). For each sampled se-
quence (Icond, peond peond et plet ity from CO3D, we
animate each of the M input images (except the first one)
using Lumiere [7], resulting in M — 1 videos {V} }M " of
length L. Then we randomly sample one frame (index k;)
from each video, and treat them as pseudo ground truth of
original input images at another timestamps, i.e. 1°" <
{179} U (V1M and T (T3} U { g} M0
We obtain around 24k sequences in total with this augmen-
tation.

We use CAT3D [17] to augment our static-view video
dataset as follows (5-th row in Table 1). For each sampled
sequence ([cond, peond eond Tigt piet ety from the video
dataset, we use CAT3D to generate 7 novel views for each
of the M input images (except the first one), resulting
in M — 1 image sets {V/}M}(L = 7) at viewpoints
{P*}M 1. Then we randomly sample one frame (index ;)
from each image set, and treat them as pseudo ground truth
of original input images at another viewpoints, i.e. 1" <

(I UV 1 and Pt e (PR U B M We
obtain around 160k sequences in total with this augmenta-
tion.

We mix all the datasets (Objaverse [12], Kubric [19],
RelOK [94], MVImgNet [82], CO3D [54], MQ4K [35],
static-view video data, augmented CO3D and augmented
static-view video data) with weights 2.5, 2.5, 1.0, 1.0, 1.0,
1.0, 5.0, 1.0 and 1.0, respectively.

C. Baselines Details

For the evaluation of sparse-view bullet-time 3D recon-
struction, we run CAT3D baselines with one or three in-
put images. For CAT3D-3cond, we use the same camera
trajectory as ours (Fig. 10 (c)) for generating novel views.
For CAT3D-1cond, we use their default camera trajectory
(a forward-facing spiral path similar to Fig. 10 (c)) for gen-
erating novel views, and manually adjust the global scene
scale such that it roughly matches the actual scene scale of
the dataset.

For the ablation study of different sampling strategies,
we evaluate the quality of the generated multi-view videos
on the NSFF dataset [36]. As in the prior work [36, 79], we

All datasets

Synthetic only

No augmentation

Figure 11. A comparison of models trained with different datasets
on in-the-wild input images. The three input images are shown on
the left-most column. Top: space-time slices of generated videos
of “fixed viewpoint, varying time”. Pixels of static background
should be straight vertical lines on the slices and pixels of dynamic
object should be smooth curves on the slices. Bottom: one frame
of generated videos of “varying viewpoint, fixed time”.

simulate a moving monocular camera by extracting images
from each of the 12 camera viewpoints at different times-
tamps (24 in total) and compare the generated multi-view
videos at all 12 viewpoints to the ground truth.

D. Ablation Study of Training Data

Training Data

Fixed Viewpoint
Varying Time

Varying Viewpoint
Fixed Time

Varying Viewpoint
Varying Time

PSNR SSIM LPIPS

PSNR SSIM LPIPS

PSNR SSIM LPIPS

Synthetic only
No augmentation
All datasets

22.19 0.745 0.123
20.84 0.596 0.135
22.49 0.749 0.110

21.41 0.547 0.123
22.03 0.602 0.104
21.86 0.599 0.105

19.50 0.523 0.173
19.41 0.519 0.160
19.74 0.546 0.152

Table 6. A ablation study of training data, evaluated on the NSFF
dataset [36]. All datasets: using all of our training datasets. No
augmentation: dropping the two augmented datasets (CO3D aug-
mented with Lumiere and static-view video data augmented with
CAT3D). Synthetic only: dropping all real-world datasets and us-
ing only synthetic 4D data (Kubric and Objaverse).

We also perform an ablation study of our training
datasets. We train our model with 1) all datasets listed in
Table 1, 2) all datasets except the two augmented datasets
(CO3D augmented with Lumiere and static-view video data
augmented with CAT3D), 3) synthetic 4D datasets only
(Kubric and Objaverse). For all three versions, we train the
model for 60k iterations, and evaluate its ability for separate
camera and time control on the NSFF dataset [36].

The quantitative results are presented in Table 6. While
the numbers themselves do not show a large gap (as most
of the evaluated pixels are static background), we ob-
serve more clear visual differences on in-the-wild data (see

Fig. 11). For the model trained only on synthetic 4D
datasets, it already gives surprisingly good control over
camera and time, but the generated scene motions are of-
ten unnatural and the generated novel views usually look
worse. This is likely a generalization issue. For the model
trained without the two augmented datasets, its main failure
mode is “fixed viewpoint, varying time” — in many cases,
the camera still moves even when the model is instructed to
only change the scene dynamics. This is potentially caused
by our imperfect filtering of the video data, where some
videos of non-static viewpoints are treated as static-view
videos.

	Introduction
	Related Work
	Method
	Multi-view Video Diffusion Model
	Dataset Curation
	Sparse-View Bullet-Time 3D Reconstruction
	Generating Consistent Multi-view Videos
	4D Reconstruction

	Experiments
	Discussion
	Method Details
	Datasets Details
	Baselines Details
	Ablation Study of Training Data

