
A. Implementation Details
For ViT[14], we adopt checkpoints from OpenAI’s offi-
cial repository[34], and for WideResNet[53], we utilize
official checkpoint provided by PyTorch[33]. The de-
fault size of the memory bank is set to 196×768 for
ViT-B[14], 256×1024 for ViT-L[14], and 196×512 for
WideResNet[53]. The pixel feature was taken from out-
puts of the 6-th layer for ViT-B[14], the 10-th layer for ViT-
L[14], and the 3rd layer for WideResNet-50[53]. Further
model architecture and size details are in Tab. 11.

For Adapters and modulate layers, we use linear layers
by default with their parameters set to D × D, where D
represents the feature dimension of the inserted layer. For
instance, the size of the linear layer is 1024× 1024 for ViT-
L[14]. We use SGD[36] with a learning rate of 1×10−3 for
adapters and 5× 10−5 for FMN. The training is conducted
over 20 epochs for the first and 10 for the second stages.
The overall training takes 1 ∼ 2 hours in a single NVIDIA
RTX-3090 in MVTec AD[7] dataset.

B. Further Explanation of Experiment Settings
Continual anomaly detection defines a multi-class train-
ing set Itotaltrain = {I1train, I2train, . . . , Intrain} and corre-
sponding test set Itotaltest = {I1test, I2test, . . . , Intest}. While
unsupervised anomaly detection trains a separate model
with each Iitrain, continual anomaly detection requires
training a unified model for all classes in a sequential man-
ner. During inference, the unified model is tested on all past
test sub-datasets in a random order.

Few-shot anomaly detection aims to detect and localize
anomalies using only a limited number of normal samples.
In our experiments, we specifically consider 1, 2, 4, and 8
normal samples.

Supervised anomaly detection involves training with
both normal and anomalous samples, simulating real-world
scenarios where a limited number of anomalous examples
might be available. We conduct experiments solely on the
VisA dataset[55], as it is the only dataset among those con-
sidered that provides an official split for this setting.

C. Experiments on More Datasets
To further evaluate the performance of our model, we con-
ducted experiments on continual and few-shot anomaly de-
tection using more datasets including VisA[55], BTAD[29],
MVTec LOCO AD[8]. The experimental results for the
continual and few-shot settings are presented in Tab. 8 and
Tab. 10 respectively. For the VisA dataset [55], the results
of UCAD[1] and WinCLIP[18] were obtained from their
original papers, while for the other datasets, we utilized the
publicly available open-source implementations [44, 56].
As demonstrated in Tab. 8, our method consistently outper-
forms the current state-of-the-art method, UCAD[1], in the

continual setting, with the exception of the pixel-AP on the
MVTec LOCO AD dataset[8]. In the few-shot setting, our
method achieves comparable or superior results compared
to WinCLIP[18] and consistently improves the performance
of the original PatchCore[37]. Notably, however, all evalu-
ated methods exhibit inferior performance on the MVTec
LOCO AD dataset[8] in both continual and few-shot set-
tings, indicating that the detection of logical anomalies re-
quires further investigation.

Dataset I-AUROC P-AP
UCAD, DFM UCAD, DFM

VisA[55] 87.4, 94.1 30.0,31.8
BTAD[29] 93.2, 94.5 34.3, 53.2

MVTec LOCO AD [8] 74.4, 76.3 3.2, 2.6

Table 8. Results of continual anomaly detection on more datasets

D. Additional Ablations
Ablation of backbones on continual setting. We im-
plement our framework in different backbones, including
ViT[14] with various size and pre-training methods and
WideResNet[53]. The experiment is conducted in continual
setting using the MVTec AD[7] dataset. ViT-B(MAE) and
ViT-B(DINO) denote backbone pre-trained with MAE[15]
and DINO[9]. ViT-B(ImageNet) denotes the backbone
trained with classification tasks on ImageNet[13] only. As
shown in Tab. 9, the backbone pre-trained with CLIP[34]
shows significantly better performance than ViT pre-trained
by MAE[15] and classification task in ImageNet[13]. The
results further prove that better feature representation mat-
ters in anomaly detection, which is our motivation to adapt
feature extractors.

backbone I-AUROC P-AP

ViT-B (ImageNet) 91.54 43.53
ViT-B (MAE) 93.16 45.50
ViT-B (DINO) 95.90 48.40
ViT-B (CLIP) 96.44 49.91
ViT-L (CLIP) 96.94 51.07

WideResNet-50 94.87 49.78

Table 9. Ablation of different backbones on continual anomaly
detection setting using MVTec AD[7] dataset .

Time and memory efficiency analysis on more mod-
els. We provide further statistical results of time and mem-
ory consumption on Tab. 12 and model size on Tab. 11. As
shown in Tab. 11, our method adds negligible parameters
to the original PatchCore[37]. Additionally, as discussed
in Sec. 4.5, our methods show advantage in inference time



Instance-AUROC

K VisA[55] BTAD[29] MVTec LOCO AD[8]
WinCLIP PatchCore DFM WinCLIP PatchCore DFM WinCLIP PatchCore DFM

1 83.8 79.9 84.0 90.0 59.6 87.4 61.3 54.5 60.5
2 84.6 81.6 86.0 89.6 85.3 88.8 63.9 59.7 64.6
4 87.3 85.3 89.8 90.4 87.4 89.8 67.6 62.0 64.8

Pixel-AUROC

K VisA[55] BTAD[29] MVTec LOCO AD[8]
WinCLIP PatchCore DFM WinCLIP PatchCore DFM WinCLIP PatchCore DFM

1 96.4 95.4 96.4 94.7 96.0 96.9 64.0 83.4 85.5
2 96.8 96.1 96.8 94.7 97.0 97.0 64.4 82.0 83.7
4 97.2 96.8 97.1 94.9 97.2 97.1 65.2 82.3 83.4

Table 10. Results of few shot anomaly detection on more datasets

Backbone Layers Feature Layer Feature Dimension Parameters
PatchCore DFM

ViT-B 10 6 768 47.3 M 49.9 M
ViT-L 20 10 1024 152 M 164 M

WideResNet-50 4 3 512 27.0 M 29.1 M

Table 11. Detailed information about model architecture and size. We insert adapters into all layers for DFM here

over PatchCore[37] but requires more memory as shown in
Tab. 12

Backbone Method FPS Memory
Train / Infer Train / Infer

ViT-B PatchCore - , 20.32 - , 2713
ViT-B DFM 24.09, 49.90 4923, 3671
ViT-L PatchCore - , 17.99 - , 3383
ViT-L DFM 20.9, 42.74 7527, 5255

Table 12. Training and Inference efficiency comparison between
our method and PatchCore[37]

Ablation of adapter layers on supervised setting. We
conduct experiments in a supervised setting to further in-
vestigate the influence of adapter layers. Using ViT-L as
the backbone and output of the 10-th layer as patch fea-
tures, we divide accessible layers into three sections based
on varying depths. As shown in Tab.13, our method con-
sistently outperforms the frozen backbone, validating the
effectiveness of utilizing real anomalous samples for im-
proved anomaly detection. Additionally, the results demon-
strate that, in general, deeper adapters result in more sig-
nificant performance improvements, which aligns with the
findings in the few-shot setting. As the number of adapters
increases, the model’s performance improves, contrasting
with the results observed in the few-shot setting. We hy-
pothesize that in the few-shot scenario, the scarcity of sam-
ples leads to over-fitting when the number of trainable pa-

rameters is too large.

1,2,3 4,5,6 7,8,9 Instace-AUROC Pixel-AP

frozen backbone 91.5 15.0

✓ 94.5 18.0
✓ 94.7 17.5

✓ 95.0 18.1
✓ ✓ 95.4 19.7

✓ ✓ ✓ 95.9 20.0

Table 13. Ablation of different adapter layers under supervised
setting on VisA dataset [55]

Instance-AUROC Pixel-AUROC

Backbone PatchCore DFM PatchCore DFM
ViT-B 97.93 98.35 97.26 97.62
ViT-L 98.52 99.06 97.63 97.78

Table 14. Results on standard unsupervised anomaly detection us-
ing MVTec AD[7] dataset.

Results on unsupervised anomaly detection. We re-
implement PatchCore[37] on unsupervised setting. The
memory bank is set to 1024 x 1024 for ViT-L and 980
x 768 for ViT-B for both PatchCore[37] and our method
here. Experimental results are presented in the Tab.14.
Note that our implementation here didn’t use multi-layer



feature aggregation and re-weighting, utilized in the orig-
inal PatchCore[37]. It turned out our method steadily
shows better performance of PatchCore[37] in the unsu-
pervised anomaly detection. The improvement is limited
since the performance of original PatchCore[37] already ap-
proaches saturation. However, in a few-shot and continual
settings where PatchCore[37] shows inferior performance,
our methods can have significant improvement.


	Implementation Details
	Further Explanation of Experiment Settings
	Experiments on More Datasets
	Additional Ablations

