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Supplementary Material

We provide additional implementation details in Sec. A
and further results in Sec. B. We discuss limitations and fu-
ture work in Sec. C.

A. Additional Implementation Details

A.1. Loss Functions

We supervise our diffusion model with losses derived from
readily available 2D supervision in the RGB image space,
avoiding the need for any sort of 3D supervision that is hard
to obtain:
• Reconstruction loss. Which we define as the L2 loss be-

tween the model output Î and the ground-truth image I:

LRecon = kÎ � Ik2. (6)

• Perceptual loss. We incorporate an LPIPS [19] loss based
on the L1 norm of the VGG-16 features �l(·) to enhance
image details, defined as:
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• Style loss. We use the Gram matrix loss based on VGG-
16 features [43] to obtain sharper details. We define the
loss as the L2 norm of the auto-correlation of VGG-16
features [43]:
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with the Gram matrix at layer l defined as:

Gl(I) = �l(I)
>
�l(I). (9)

The final loss used to train our model is the weighted sum
of the above terms: L = LRecon + LLPIPS + 0.5LGram.

A.2. Progressive 3D updates

Please refer to the pseudocode in Algorithm 1 for further
details.

A.3. Evaluation Metrics

We employ several evaluation metrics to quantitatively as-
sess the model’s performance in novel view synthesis.
These metrics include Peak Signal-to-Noise Ratio (PSNR),
Structural Similarity Index (SSIM) [68], Learned Percep-
tual Image Patch Similarity (LPIPS) [19], and Fréchet In-
ception Distance (FID) [15]. Following the evaluation pro-
cedure outlined by Nerfbusters [70], we calculate a visibil-
ity map and mask out the invisible regions when computing
the metrics.

Algorithm 1: Progressive 3D Updates for Novel
View Rendering

Input: Reference views Vref, Target views Vtarget, 3D
representation R (e.g., NeRF, 3DGS),
Diffusion model D (DIFIX), Number of
iterations per refinement Niter, Perturbation
step size �pose

Output: High-quality, artifact-free renderings at
Vtarget

1 Initialize: Optimize 3D representation R using Vref.
2 while not converged do

/* Optimize the 3D

representation */

3 for i = 1 to Niter do

4 Optimize R using the current training set.

/* Generate novel views by

perturbing camera poses */

5 for each v 2 Vtarget do

6 Find the nearest camera pose of v in the
training set.

7 Perturb the nearest camera pose by �pose.
8 Render novel view v̂ using R.
9 Refine v̂ using diffusion model D.

10 Add refined view v̂ to the training set.

11 return Refined renderings at Vtarget.

PSNR. The Peak Signal-to-Noise Ratio (PSNR) is widely
used to measure the quality of reconstructed images by
comparing them to ground truth images. It is defined as:

PSNR = 10 · log10
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where MAX represents the maximum possible pixel value
(e.g., 255 for 8-bit images), and MSE is the mean squared
error between the predicted image Ipred and the ground truth
image Igt. Higher PSNR values indicate better reconstruc-
tion quality.

SSIM. The Structural Similarity Index (SSIM) evaluates
the perceptual similarity between two images by consider-
ing luminance, contrast, and structure. It is computed as:

SSIM(Ipred, Igt) =
(2µpredµgt + C1)(2�pred,gt + C2)
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(a) Difix (   = 200)
(b) Difix (   = 200) 

w/o Ref
(d) Difix (   = 1000)

w/o Ref, GramInputGT (c) Difix (   = 200) 
w/o Ref, GramRef

Figure S1. Visual comparison of DIFIX components. Reducing the noise level ⌧ ((c) vs. (d)), incorporating Gram loss ((b) vs. (c)), and conditioning on
reference views ((a) vs. (b)) all improve our model.

where µ and �
2 represent the mean and variance of the pixel

intensities, respectively, and �pred,gt is the covariance. The
constants C1 and C2 stabilize the division to avoid numeri-
cal instability.

LPIPS. The Learned Perceptual Image Patch Similarity
(LPIPS) metric evaluates the perceptual similarity between
two images based on feature embeddings extracted from
pre-trained neural networks. It is defined as:

LPIPS(Ipred, Igt) =
X

l

k�l(Ipred)� �l(Igt)k22, (12)

where �l represents the feature maps from the l-th layer of
a pre-trained VGG-16 network [52]. Lower LPIPS values
indicate greater perceptual similarity.

FID. The Fréchet Inception Distance (FID) measures the
distributional similarity between generated images and real
images in the feature space of a pre-trained Inception net-
work. It is computed as:

FID = kµgen � µrealk22 + Tr(⌃gen + ⌃real � 2(⌃gen⌃real)
1
2 ),

(13)
where (µgen,⌃gen) and (µreal,⌃real) denote the means and
covariances of the feature distributions for the generated
and real images, respectively. Lower FID values indicate
better alignment between the generated and real image dis-
tributions. We report the FID score calculated between the
novel view renderings and the corresponding ground-truth
images across the entire testing set.

A.4. Data Curation

To curate paired training data, we employ a range of strate-
gies including sparse reconstruction, cycle reconstruction,
cross-referencing, and intentional model underfitting. The
curated paired data generated through these strategies is vi-
sualized in Fig. S2. The simulated corrupted images exhibit
common artifacts observed in extreme novel views, such

as blurred details, missing regions, ghosting structures, and
spurious geometry. This curated dataset provides a robust
learning signal for the DIFIX model, enabling the model to
effectively correct artifacts in underconstrained novel views
and enhance the quality of 3D reconstruction.

B. Additional Results

B.1. Ablation Study of DIFIX

In addition to the quantitative results presented in Tab. 5,
we provide visual examples in Fig. S1 to demonstrate the
effectiveness of our key design choices in DIFIX. Com-
pared to using a high noise level (e.g., pix2pix-Turbo [40]),
reducing the noise level significantly removes artifacts and
improves overall visual quality ((c) vs. (d)). Incorporating
Gram loss enhances fine details and sharpens the image ((b)
vs. (c)). Furthermore, conditioning on a reference view cor-
rects structural inaccuracies and alleviates color shifts ((a)
vs. (b)). Together, these advancements culminate in the su-
perior results achieved by DIFIX.

B.2. Evaluation of Multi-View Consistency

We evaluate our model using the Thresholded Symmetric
Epipolar Distance (TSED) metric [80], which quantifies the
number of consistent frame pairs in a sequence. As shown
in Tab. S1, our model achieves higher TSED scores than
reconstruction-based methods (e.g., Nerfacto) and other
baselines, demonstrating superior multi-view consistency
in novel view synthesis. Notably, the final post-processing
step (DIFIX3D+) enhances image sharpness without com-
promising 3D coherence.

Method Nerfacto NeRFLiX GANeRF DIFIX3D DIFIX3D+
TSED (Terror = 2) 0.2492 0.2532 0.2399 0.2601 0.2654

TSED (Terror = 4) 0.5318 0.5276 0.5140 0.5462 0.5515

TSED (Terror = 8) 0.7865 0.7789 0.7844 0.7924 0.7880

Table S1. Multi-view consistency evaluation on the DL3DV dataset.

A higher TSED score indicates better multi-view consistency.
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Figure S2. Visualization of the paired dataset: We utilize a variety of strategies to simulate corrupted training data, including sparse reconstruction, cycle
reconstruction, cross-referencing, and intentional model underfitting. The curated paired dataset provides a strong learning signal for the DIFIX model.

C. Limitation and Future Work

We present DIFIX3D+, a novel pipeline designed to ad-
vance 3D reconstruction and novel-view synthesis. How-
ever, as a 3D enhancement model, the performance of DI-
FIX3D+ is inherently limited by the quality of the ini-
tial 3D reconstruction. It currently struggles to enhance
views where 3D reconstruction has entirely failed. Address-
ing this limitation through the integration of modern diffu-
sion model priors represents an exciting direction for fu-
ture research. To prioritize speed and approach near real-
time post-rendering processing, DIFIX is derived from a
single-step image diffusion model. Additional promising
avenues include scaling DIFIX to a single-step video dif-
fusion model, enabling enhanced long-context 3D consis-
tency.
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