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6. Additional Visualization Results

Figs. 11 to 13 demonstrate a comprehensive compari-
son where we consider supervised learning [21] as the
upper bound for the vessel segmentation task, as well
as all baseline methods mentioned in the main paper.
For the supervised learning approach, both image-based
and video-based inputs were considered. The image-
based input utilized only the annotated image, while the
video-based input involved using the annotated image
along with two preceding and two subsequent frames,
totaling five frames, as input. The results show that
although supervised learning theoretically offers the
best performance, our method achieves close to those
of supervised learning methods without ground truth.
Additionally, we found that using five consecutive images
as input for nn-UNet [21] was only slightly better than
using a single image as input. In contrast, our method
exhibits significant improvement compared to both the
traditional Hessian-based filter and self-supervised meth-
ods, demonstrating that the robust performance of our
approach is not solely attributed to the increase in input
images. We showcase some examples at the following
anonymous URL: https://colab . research.
google.com/drive/1IYGiJECwWAaoLPq7KGHQE_
dvtrdHz9fUA ? authuser = 2 & hl = zh - tw #
scrollTo=nlppvOhgbRkV.  Additionally, we in-
clude 5 out of 111 sequences of our XACV dataset and the
source code in the zip file.

7. Temporal Coherency

Our method takes an entire X-ray video as input, thus pro-
ducing segmentation results with better temporal coherency.
Temporal coherency is essential for making medical di-
agnoses, especially when dealing with blood flow in ves-
sels. Therefore, we conduct visual comparisons between
our method and other compared methods by slicing hori-
zontally or vertically and stacking the segmentation results.
The results in Fig. 14 show our method strikes a better
balance between segmentation accuracy and temporal co-
herency. While other baseline methods either produce false
segmentation results or do not maintain consistent predic-
tion along the temporal dimension.

8. Impact of prior

We add experiments demonstrating how the Hessian prior
affects subsequent results, including ablation studies with

different prior qualities. In our experiments, We replace the
Hessian prior mask with a better mask (FreeCOS predic-
tion) and observe a 2.5% improvement in dice score. We
also provide visual results in Fig. 15.

9. Model and training details

We elaborate on the architectural details and training
methodologies for all neural network components.

9.1. Stagel: Layer Separation on bootstrapping

This MLP (Multi-Layer Perceptron) model consists of these

main components:

* Input Layer: Input dimension is 3 (color channels).

* Hidden Layer 1: Takes input of dimension 3 and outputs a
dimension of 2. This layer has 256 neurons, with 4 hidden
layers and an outermost linear layer.

* Hidden Layer 2: Takes input of dimension 2 and outputs
a dimension of 3. This layer also has 256 neurons, with 4
hidden layers and an outermost linear layer.

* Output Layer: Takes input of dimension 3 and outputs a
dimension of 4. This layer has 256 neurons, with 4 hidden
layers and an outermost linear layer.

Important hyperparameters:

* Asmooth: Controls the weight of the smoothness term in the
bootstrapping loss. We set it to 0.001.

* \imit: Regularizes the foreground MLP in the bootstrap-
ping loss. We set it to 0.02.

9.2. Stage 2: Vessel decomposition

In stage 2, We employ different standard U-Nets with three
down and three up layers to predict masks and foreground
canonical images. Both models utilize CNNs with 3 x 3 ker-
nels, strides of 1, and padding of 1. We use batch norm and
bilinear downsampling or upsampling after each layer in the
U-Nets.

Training setting. We set the batch size to 16, including
512x512 image resolution, and trained on a 4090 GPU.
Training on 80-90 cardiac images takes approximately 20
minutes.
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Figure 11. Additional visualization results on the vessel segmentation.
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Figure 12. Additional visualization results on the vessel segmentation.
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Figure 13. Additional visualization results on the vessel segmentation.
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Figure 15. Impact of prior. We test the impact of the prior on
our model. Replacing the original Hessian prior with the FreeCOS
prediction results in a 2.5% improvement in dice score. Red zoom-

in patches show that the FreeCOS-based prior has better predictive
capabilities.
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