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1. Experiments
1.1. Implementation Details

We use the image encoder and text encoder of CLIP [6] to
extract the visual and linguistic features, respectively. Un-
less specified, the ViT-L/14 is used as the image encoder.
The text encoder remains frozen in the training phase. The
number of learnable prompt token L is set to 12. The hyper-
parameter λ is set as 0.5. The input images are resized to
224 × 224 in both training and testing stages. Our EVSITP
is trained for 50 epochs using AdamW optimizer with a
batch size of 48. The learning rate is set as 0.0001 and de-
cays with the cosine policy.

1.2. Datasets and Evaluation Protocols

PETA [1] is a composite collection comprising 19,000
images aggregated from 10 publicly available person re-
identification datasets. Out of these, 8,705 pedestrians are
annotated with 61 binary attributes and 4 multi-class at-
tributes. The dataset is divided into training, validation, and
testing subsets, containing 9,500, 1,900, and 7,600 pedes-
trian images, respectively.

PA100K [5] is a large-scale pedestrian dataset collected
from 598 outdoor surveillance cameras. It includes 100,000
images, with each annotated for 26 binary attributes. The
dataset is divided into 80,000 images for training, while the
remaining 20,000 images are split equally into a validation
set and a test set, each containing 10,000 images.

RAPv1 [3] comprises 41,585 pedestrian images cap-
tured from 26 indoor surveillance cameras in real-world set-
tings. Each image is labeled with 69 binary attributes and 3
multi-class attributes. The dataset is divided into a training
set containing 33,268 images and a testing set with 8,317
images.

*Corresponding authors: Yan Huang, Yuzhong Chen

Table 1. Data split of our Celeb-PAR dataset.

split training testing total

images 23,180 11,006 34,186

RAPv2 [4] includes 84,298 pedestrian images captured
from 25 indoor camera scenes in a shopping mall. Con-
sistent with standard dataset splits, it is divided into three
subsets: 50,957 images for training, 16,986 images for val-
idation, and the remaining 16,985 images for testing. Each
pedestrian image is annotated with 72 attributes.

Evaluations Protocols. Following the previous PAR
method [7–9], we adopt five metrics to evaluate the per-
formance of our EVSITP, namely: mean average precision
(mA), accuracy (Accu), precision (Prec), recall (Recall),
and F1 score (F1). To provide a more balanced assessment,
we also report mFive, introduced in [10], which calculates
the average across these five metrics. This approach en-
sures a more comprehensive evaluation, addressing scenar-
ios where a model may excel in one metric but fall short in
others.

2. Celeb-PAR Dataset

Our proposed Celeb-PAR possesses the following three
core characteristics: (1) It originates from diversified street
scenes, ensuring effective generalization of the PAR model
to various real-world application scenarios; (2) Our dataset
is constructed based on a long-term person re-identification
dataset [2], thus encompassing pedestrian clothing changes
across different seasons; (3) The pedestrian IDs in the train-
ing set are completely separated from those in the test set,
a zero-shot setting that aligns more closely with real-world
scenario distributions. Fig. 1 gives the statistic information
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Figure 1. Statistic information of our Celeb-PAR dataset. (a), (b), and (c) show the distributions of age, gender, and nationality, respectively

Table 2. Attribute groups and details defined in our proposed
Celeb-PAR.

Attribute Group Details

Gender male/female

Hair baldness/long hair/short hair

Headwear glasses/hat

Body type fatness/normal build/thinness

Upper body
windbreaker/shirt/sweater/vest/t-shirt/

jacket/suit/other clothing

Lower body
jeans/suit trousers/leisure sports pants/tight pants/

leisure sports shorts/dress/half-length dress/other pants

Sleeve length long sleeve/short sleeve

Bag backpack/handbag/shoulder bag/other bag

Shoes
boots/leather shoes/sandals/high heels/

sneakers/other shoes

View angle front view/side view/back view

Hand hand carrying object

of our dataset, including the distribution of age, gender, and
nationality of celebrities.

Multi-scenarios. Our newly proposed Celeb-PAR
dataset is annotated with attribute labels based on the Celeb-
reID dataset. Celeb-reID is compiled by collecting im-
ages from Google, Bing, and Baidu Image searches us-
ing keywords such as “celebrity name + street snapshot”
(e.g.,“Justin Bieber street snapshot”). Consequently, the
clothing worn by pedestrians in this dataset exhibits consid-
erable diversity, and each street snapshot features a unique
background. In constructing Celeb-PAR, we merge the
training and query sets of Celeb-reID to form the training
set of Celeb-PAR, while the gallery set of Celeb-reID is uti-

(a) Attributes Numbers Distribution

(b) Attributes Ratio Distribution

Figure 2. Statistic properties of our Celeb-PAR dataset. (a) and (b)
show the distributions of attribute numbers and attribute ratio.

lized as the testing set of Celeb-PAR, consisting of 23,180
and 11,006 images respectively (referred to Tab. 1).

Multi-seasons. In Tab. 2, we meticulously list 41 at-
tributes annotated in the dataset. By observing the Tab. 2,
it becomes evident that our dataset encompasses a variety
of clothing attributes suitable for different seasons, such as
attire for both summer and winter, which were previously
unrepresented in existing datasets. As shown in Fig. 3,



Figure 3. An illustration of representative samples in our newly proposed Celeb-PAR. The first row shows clothing suitable for spring and
summer, while the second row displays attire more suited to autumn and winter.

our Celeb-PAR includes clothing styles from various sea-
sons, which aligns more closely with the distribution of
real-world scenarios, enabling the trained model to bet-
ter meet the application requirements in real-life situations.
Our Celeb-PAR also exhibits a long-tail effect, similar to
existing PAR datasets, depicted in Fig. 2 (a) and (b) and
reflects real-world attribute distributions.

Non-overlapping Pedestrian IDs. Our Celeb-PAR,
along with datasets PETAzs and RAPzs, adheres to the
zero-shot dataset partition principle, ensuring that pedes-
trian IDs in the training and test sets are completely
non-overlapping to reflect real-world scenarios. However,
PETAzs and RAPzs, which were collected from PETA and
RAPv2 respectively, do not possess the multi-scene and
multi-season the above-mentioned characteristics. In com-
parison, our Celeb-PAR surpasses PETAzs and RAPzs in
terms of the number of images it contains.

3. Ablation Study

3.1. Analysis of Using Three Fixed Prompts

We conducted experiments to assess the impact of using
different fixed prompt (FP) templates, with the results dis-
played in Tab. 3. These results indicate that combining
three templates introduced in our paper yields the best per-
formance, suggesting a more effective capture of semantic
information within the linguistic modality compared to us-
ing one or two FPs alone.

In fact, we also attempted to introduce a fourth fixed
prompt template: “( ) can be seen in this pedestrian.” How-
ever, we found that the inclusion of a fourth template did
not improve the performance (mA 85.95 vs. 86.10, Recall
86.57% vs. 86.65%, F1 82.55% vs. 82.78%). This may be

Table 3. Performance comparison with varying numbers of FP.

Number of FP
RAPv1

mA Recall F1

one (FP1) 85.57 87.14 81.99

one (FP2) 85.59 86.29 82.58

one (FP3) 85.48 84.27 82.58

average (one FP) 85.55 85.90 82.38

two (FP1 + FP2) 85.85 84.93 82.37

two (FP1 + FP3) 85.73 86.31 82.41

two (FP2 + FP3) 85.92 87.34 82.35

average (two FPs) 85.83 86.19 82.38

three (FP1 + FP2 + FP3) 86.10 86.65 82.78

due to the introduction of redundant features for the same
attribute when more templates are used, slightly affecting
the final experimental outcomes.

3.2. Different Conditional Prompts Methods

The previously most classic method for leveraging visual
features to refined learnable prompts is CoCoOp [11], but
it differs significantly from our approach. In CoCoOp, as
illustrated in Fig. 4 (a), the visual feature is fed into a
lightweight Meta-Net (i.e., two linear layers and a ReLU) to
generate a specific image-conditional token for each image-
text pair. This token is then summed with learnable vec-
tors form the prompt. However, CoCoOp has notable draw-
backs: it exhibits low computational efficiency and fails to



Table 4. Comparison with different conditional prompts methods.

Method
RAPv1 RAPv2

mA Accu Prec Recall F1 mFive mA Accu Prec Recall F1 mFive
CoCoOp 85.02 71.49 80.65 84.77 82.66 80.92 83.06 69.38 78.77 83.61 81.12 79.19
EVSITP 86.10 71.64 79.24 86.65 82.78 81.28 83.83 69.32 77.64 85.13 81.21 79.43
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Figure 4. Different conditional prompts feature via visual fea-
ture. (a) is the image-conditional method from CoCoOp, (b) is
our method.

fully exploits the relationship between visual features and
learnable prompts.

Due to the fact that CoCoOp generates unique learnable
prompts for each image instance, separate forward propa-
gation calculations are required for each instance. For ev-
ery input image, a conditional token is produced by the
Meta-Net, which is then integrated with the prompt vec-
tor and fed into the text encoder. This process is resource-
intensive, consuming significant GPU memory and compu-
tational power.

To demonstrate this, we conduct a comparative evalu-
ation using CoCoOp’s conditional prompts method within
our EVSITP framework, measuring a batch forward propa-

gation time against our method. Under identical hardware
and parameter settings, our experimental results show that
CoCoOp requires 13.09 ms to process one batch, whereas
our EVSITP only needs 1.91 ms. Additionally, with the
same GPU memory resources, the batch size is limited to
8 when using CoCoOp’s conditional prompts, whereas our
method allows for a substantial increase in batch size to 48,
thereby significantly enhancing computational efficiency.

Moreover, CoCoOp directly utilizes the Meta-Net to
convert visual features into tokens and appends them to
the prompt vectors. However, this approach has limita-
tions as it fails to capture the individual importance of
each prompt token and overlooks the potential relation-
ships between visual features and prompts. In contrast,
as shown in Fig. 4 (b), our method incorporates a cross-
attention mechanism to achieve image-conditional learn-
able prompts. This enables a more nuanced capture of the
associations between learnable prompt features and visual
features. Specifically, cross-attention computes the similar-
ity between learnable prompts and visual features, assigning
corresponding weights to each feature, thereby achieving
precise feature alignment. This approach enables the model
to obtain more accurate and detailed linguistic descriptions,
facilitating more effective visual-semantic interactions. As
evident from Tab. 4, our method outperforms the image-
conditional approach employed by CoCoOp. Specifically,
on the RAPv1 and RAPv2 datasets, our method achieves an
improvement of 1.08% and 0.77% in terms of mA, respec-
tively .

3.3. Ablation Study of BMIM

Our BMIM incorporates two interaction mechanisms: VLII
(integrating visual information into linguistic modal infor-
mation) and LVII (incorporating semantic information from
the linguistic modal into visual features). In Tab. 5, we con-
duct a thorough ablation study analysis of BMIM. The re-
sults from Tab. 5 clearly demonstrate that adopting either
VLII or LVII alone can lead to a certain degree of perfor-
mance improvement. When both are used in combination,
the performance enhancement is even more pronounced.
This outcome strongly supports the necessity and effective-
ness of establishing interaction mechanisms between the
two modalities.



Table 5. Ablation study on BMIM.

Method RAPv1 RAPv2
VLII LVII mA Accu Prec Recall F1 mA Accu Prec Recall F1
× × 85.19 71.55 79.88 85.77 82.72 82.88 69.54 78.84 83.71 81.20
✓ × 85.29 71.23 80.39 84.63 82.46 83.18 69.29 77.72 81.02 81.02
× ✓ 85.34 72.07 81.43 84.57 82.97 83.31 69.29 77.72 84.60 79.21
✓ ✓ 86.10 71.64 79.24 86.65 82.78 83.83 69.32 77.64 85.13 81.21
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Figure 5. Ablation study on our BMIM. Results are reported on
RAPv1 (a) and RAPv2 (b).

3.4. Analysis of V-L Shared Token

BMIM serves as the core of our approach, integrating the
two pivotal components fo VLII and LVII. Unlike previ-
ous bimodal PAR approaches, we accord equal significance
to both visual and linguistic features to facilitate effective
interaction between these two modalities. Notably, we in-
troduce an innovative V-L shared token, inspired by the ad-
ditional class token in ViT, which captures the most critical
feature information across all patches. Consequently, we
aim to leverage this V-L shared token within BMIM to ab-
sorb and integrate information from both modalities, further
enhancing the interaction of model information in VLII and
LVII.

As illustrated in Fig. 5, we analyze the impact of V-L
shared token on the performance of BMIM. It is evident that
the introduced V-L shared token results in improvements of
0.54% and 0.14% in terms of mA on RAPv1 and RAPv2,
respectively. The performance enhancement demonstrates
the effectiveness of the introduced V-L shared token in fa-
cilitating modality information interaction.
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