
Erasing Undesirable Influence in Diffusion Models

Supplementary Material

7. Proofs

Theorem 3.1 The optimal solution of the optimization problem in Eq. (6) is ω→ = →ωLr(εt;Dr) + ωt→ωg(εt) where
ωt = max{0, at↑↓ωg(ωt)

→↓ωLr(ωt;Dr)
↔↓ωg(ωt)↔2

2
}.

Proof. The Lagrange function with ω ↑ 0 for Eq. (6) is

h(ω,ω) =
1

2

∥∥→ωL(εt;Dr)↓ ω
∥∥2
2
+ ω(at ↓→ωg(εt)

↗ω). (7)

Then, using the Karush-Kuhn-Tucker (KKT) theorem, at the optimal solution we have

ω ↓→ωLr(εt;Dr)↓ ω→ωg(εt) = 0,

→ωg(εt)
↗ω ↑ at,

ω(at ↓→ωg(εt)
T ω) = 0,

ω ↑ 0. (8)

From the above constraints, we can obtain:

ω = →ωLr(εt;Dr) + ω→ωg(εt),

ω = max{0,
at ↓→ωg(εt)↗→ωLr(εt;Dr)

↔→ωg(εt)↔22
}. (9)

Theorem 3.2 [Pareto optimality] The stationary point obtained by our algorithm is Pareto optimal of the problem
minω[Lr(ε;Dr),Lf (ε;Df )].

Proof. Let ε→ be the solution to our problem. Recall that for the current ε, we find ϑK to minimize g(ε,ϑ) = Lf (ε;Df )↓
minLf (ϑ;Df ). Assume that we can update in sufficient number of steps K so that ϑK = ϑ→(ε) = argminε g(ε,ϑ) =
argminε Lf (ϑ;Df ). Here ϑ is initialized at ε.

The objective aims to minimize Lr(ε;Dr) + ωg(ε;ϑ→(ε)), let ε→ be the optimal solution to this objective. Note that
g(ε,ϑ→(ε)) = Lf (ε;Df ) ↓ minLf (ϑ→(ε);Df ) ↑ 0 as ϑ starts from ε and is update to decreas Lf (ϑ;Df ). This will
decrease to 0 for minimizing the above objective. Therefore, at the optimal solution ε→, we have g(ε→

,ϑ→(ε→)) = 0.
This further implies that Lf (ε→;Df ) = minLf (ϑ→(ε→);Df ), meaning that ε→ is the current optimal solution of Lf (ε;Df )
because we cannot update further the optimal solution. Moreover, we have ε→ as the local minima of Lr(ε;Dr) in sufficiently
small vicinity considered, because in the small vicinity around ε→, g (ε,ϑ→(ε→)) = 0 provides no further improvements for
the above sum, any increase in the above objective in the vicinity of ε→ would primarily be due to an increase in Lr(ε;Dr).



8. Reproducibility Statement and Details

In this section, we provide detailed instructions on the reproduction of our results, we also share our source code at the
repository https://github.com/JingWu321/EraseDiff.

DDPM. Results on conditional DDPM follow the setting in SA [28]. Thanks to the pre-trained DDPM from SA. The batch
size is set to be 128, the learning rate is 1 ↗ 10↑4, our model is trained for around 300 training steps. 5K images per class
are generated for evaluation. For the remaining experiments, four and five feature map resolutions are adopted for CIFAR10
where image resolution is 32↗ 32. All models apply the linear schedule for the diffusion process. We used A5500 and A100
for all experiments.

SD. We use the open-source SD v1.4 checkpoint as the pre-trained model for all SD experiments. The learning rate is
1 ↗ 10↑5, and our method only fine-tuned the unconditional (non-cross-attention) layers of the latent diffusion model when
erasing the concept of nudity. When forgetting nudity, we generate around 400 images with the prompts {‘nudity’, ‘naked’,
‘erotic’, ‘sexual’} and around 400 images with the prompt ‘a person wearing clothes’ to be the training data. We evaluate
over 1K generated images for the Imagenette and Nude datasets. 4703 generated images with I2P prompts are evaluated
using the open-source NudeNet classifier [2]. The repositories we built upon use the CC-BY 4.0 and MIT Licenses.

9. Additional results

Below, we also provide results on SD for EraseDiff when we replace ϖf with εω(xt|cm) like Fan et al. [16], Heng and Soh
[28], where cm is ‘a person wearing clothes’, denoted as EraseDiff wc. The CLIP score and FID score for EraseDiff wc are
30.31 and 19.55, respectively.

To recap, our formulation provides flexibility in choosing ϖf = εω(xt|cm) in Eq.(2), allowing controlled semantic shifts
to achieve different levels of content modification. We presented two cases to illustrate this capability: for nudity erasure,
setting cm =‘a photo of a Pokémon’ results in excessive semantic shift, which may lead to blurring. However, cm =‘a person
wearing clothes’ yields a closer match to the original generation while ensuring appropriate modifications. This is indeed a
key feature, enabling users to tailor content refinement based on desired constraints.

Figure 6. Quantity of nudity content detected using the NudeNet classifier from Nude-1K data with a threshold of 0.6. Our method
effectively erases nudity content from SD, outperforming ESD and SA.

https://github.com/JingWu321/EraseDiff


SD v1.4 SalUn EraseDiff_wcESD

Added by authors for publication

SA EraseDiff

Figure 7. Generated examples with I2P prompts when forgetting the concept of ‘nudity’.



SD v1.4 SalUnESD SA EraseDiff_wc EraseDiff

Added by authors for publication

Figure 8. Generated examples with I2P prompts when forgetting the concept of ‘nudity’.



SD v1.4 SalUnESD SA EraseDiff_wc EraseDiff

Added by authors for publication

Figure 9. Generated examples with I2P prompts when forgetting the concept of ‘nudity’.



Figure 10. The flagged images generated by EraseDiff that are detected as exposed female breast/genitalia by the NudeNet classifier with
a threshold of 0.6. The top two rows are generated images conditioned on prompts {‘nudity’, ‘naked’, ‘erotic’, ‘sexual’}, and the rest are
those conditioned on I2P prompts. No images contain explicit nudity content.

SD v1.4 SalUnESD

Added by authors for publication

SA EraseDiff_wc EraseDiff

Figure 11. Visualization of generated examples with prompts {‘nudity’, ‘naked’, ‘erotic’, ‘sexual’} when forgetting the concept of ‘nudity’.



SD v1.4 SalUnESD Added by authors for publicationSA EraseDiff_wc EraseDiff

Figure 12. Visualization of generated images with COCO 30K prompts by the scrubbed SD models when forgetting the concept of ‘nudity’.



SD v1.4 SalUnESD Added by authors for publicationSA EraseDiff_wc EraseDiff

Figure 13. Visualization of generated images with COCO 30K prompts by the scrubbed SD models when forgetting the concept of ‘nudity’.

SD v1.4

SalUn

ESD

EraseDiff

Figure 14. Generated images after forgetting the class ‘tench’. The first column is generated images conditioned on the class ‘tench’ and
the rest are those conditioned on the remaining classes.



SD v1.4

SalUn

ESD

EraseDiff

1-3, 2-20, 3-2, 4-75, 5-1, 6-5, 7-7, 8-14, 9-19

Figure 15. Visualization of generated images by the scrubbed SD models when forgetting the class ‘tench’ on Imagenette. The first column
is generated images conditioned on the class ‘tench’ and the rest are those conditioned on the remaining classes.

SD v1.4

SalUn

ESD

EraseDiff

0-86,1-2,2-10,3-3,4-13,5-6,6-4,7-19,8-41,9-24

Figure 16. Visualization of generated images by the scrubbed SD models when forgetting the class ‘tench’ on Imagenette. The first column
is generated images conditioned on the class ‘tench’ and the rest are those conditioned on the remaining classes.



SD v1.4

SalUn

ESD

EraseDiff

0-91,1-19,2-11,3-10,4-8,5-15,6-11,7-20,8-47,9-7

Figure 17. Visualization of generated images by the scrubbed SD models when forgetting the class ‘tench’ on Imagenette. The first column
is generated images conditioned on the class ‘tench’ and the rest are those conditioned on the remaining classes.

SD v1.4

SalUn

ESD

EraseDiff

0-94,1-35,2-29,3-51,4-31,5-21,6-16,7-30,8-79,9-30

Figure 18. Visualization of generated images by the scrubbed SD models when forgetting the class ‘tench’ on Imagenette. The first column
is generated images conditioned on the class ‘tench’ and the rest are those conditioned on the remaining classes.



SalUn

SA

EraseDiff

NGFT

BlindSpot

SalUn EraseDiff

Figure 19. Visualization of generated examples when forgetting the class ‘airplane’ on DDPM.


	Introduction
	Background
	Diffusion Unlearning
	Training objective
	Solution
	Analysis

	Related Work
	Experiment
	Setup
	Results on DDPM
	Results on Stable Diffusion
	Computational efficiency
	Ablation study

	Conclusion, limitations and broader impacts
	Proofs
	Reproducibility Statement and Details
	Additional results

