Event-Equalized Dense Video Captioning

Supplementary Material

1. More implementation details

We present more details on models and the dataset. We also
provide codes of our key components in the supplemen-
tary material.

1.1. Model details.

In this part, we introduce more details on the model struc-
ture.

Captioning Head. For each query ¢;, deformable soft at-
tention [2] is utilized to generate context features z; ; with
frame features around the reference points. At each times-
tamp t, we feed context features z; ;, event query features
¢; and previous words {wi,j}z;ll into the LSTM model
to get the current word w; . As the sentence is gener-
ated, the captioning head produces the complete sentence
Si = w; 1, ..., w, T, where T' denotes the length of the sen-
tence. The process of the captioning head C'ap can be for-
mulated as:

wi = Cap(zie-1, qi {wi; }i2)). (1)

Event-Enhanced Encoder. This module aims to help the
model focus on frame-frame and frame-event relationships.
To realize this, a trainable dictionary is built with a size of
N, * hidden_dim. During the training process, the model
updates the dictionary to separate the frames more thor-
oughly. For a given pseudo-event label I;, we get a la-
bel embedding le; from the dictionary. After that, to pre-
dict multi-scale events, the encoder adds L temporal con-
volutional layers (stride=2, kernel size=3) to get feature
sequences across multiple resolutions, from T to 7/2%.
Meanwhile, the pseudo-event labels are also down-scaled
with 2D convolutional layers to get multi-scale labels. Fi-
nally, the multi-scale features and multi-scale pseudo-event
labels are fed into the transformer encoder together.
Pseudo-Event Initialization. This module aims to help the
model pay equal attention to all possible events. To real-
ize this, center temporal location t; is calculated for each
pseudo-event F;. After that, we calculate the Inverse Sig-
moid value for ;. The function can be formulated as :

t;
1—1t;

Invgg(t;) = log( ). 2)

Then, Sinusoidal Positional Encoding is utilized to get the
corresponding positional embedding. Finally, a linear pro-
jection layer and a normalization layer is used to match the
hidden dimension of the decoder.

Table 1. Ablation on the designed components. We report the
results on ActivityNet Captions. PEI denotes the Pesudo-Event
initialization module. EEE denotes the Event-Enhanced encoder
module. Without PEI, the queries will be randomly initialized and
are updated during the training process. Without EEE, we directly
fuse visual features and positional embedding for each video frame
together.

PEI EEE | BLEU4T METEOR?T CIDErt SODA_c¢t Flt

x x 221 8.06 29.97 592 5478

v 2.23 8.49 31.28 6.03 55.28

vV ox 236 8.40 32.41 6.09 5557

v 243 8.57 33.63 613  56.14
1.2. Dataset Details.

In this paper, we conducted our experiments on ActivityNet
Captions and YouCook?2 datasets. For the ActivityNet Cap-
tions dataset, we utilize C3D, TSN, and CLIP features. The
C3D features are provided by Wang et al. [2]. The TSN fea-
tures are provided by Zhou et al. [3]. The CLIP features are
provided by Kim et al. [1]. Among them, C3D and CLIP
features are acquired by first sample video frames at a rate
of 1 FPS and then extracted by the corresponding pretrained
encoder. The TSN features are sampled at a rate of 2 FPS.
For the YouCook?2 dataset, we only use TSN and CLIP fea-
tures because C3D features are not publicly available.

2. More experiments
2.1. More Ablation Experiments.

Ablation Experiments on Different Components in
E?DVC on Anet Dataset. Since the components ablation
study in the main paper is only conducted on the YouCook?2
dataset, we present the results on the ActivityNet Captions
dataset in this section. The result is presented in Table .
It’s clear that both PEI and EEE improve the model’s perfor-
mance on Dense Video Captioning and Event Localization
tasks. The results align with that in the main paper. Com-
bining PEI and EEE yields the best performance, demon-
strating the superiority of our proposed components.

Ablation Experiments on Cluster Algorithms. As illus-
trated in Table 2, we present an ablation study to explore the
effects of different clustering algorithms in the Event Per-
ception Module. Here, we utilize two additional clustering
algorithms (DBSCAN and KMeans) to replace the agglom-
eration hierarchical clustering method. The results show
that three different clustering algorithms achieve significant



Table 2. Ablation on varying cluster algorithms. This experiment is conducted on the ActivityNet Captions and YouCook2 datasets.
No_Cluster denotes the baseline without any clustering algorithm. For the dense video captioning performance, we present both captioning
and localization results. We also calculate the Accuracy (Acc), Recall, and F1 score to evaluate the clustering quality. It’s obvious that the
cluster quality is positive to the dense video captioning performance.

Dense Video Caption Cluster Metrics
Cluster_Alg Dataset
BLEU41 METEOR? CIDErt SODA_ct F171 Acct Recallt F11
No_cluster Anet 2.21 8.06 29.97 5.92 54.78 - - -
DBSCAN Anet 221 8.48 32.10 6.08 55.34 73.21 33.01 45.50
Kmeans Anet 2.39 8.51 32.28 6.05 55.65 75.92 34.04 47.00
AHC Anet 243 8.57 33.63 6.13 56.14 75.62 36.43 49.17
No_cluster Anet 1.40 5.56 29.69 4.92 26.81 - - -
DBSCAN YC2 1.54 5.84 30.77 5.11 27.07 41.45 28.78 33.94
Kmeans YC2 1.57 6.00 31.76 5.21 28.08 4231 29.04 34.44
AHC YC2 1.68 6.11 34.26 5.39 28.64 42.54 29.76 35.02
Table 3. Ablation on a varying number of clusters. We re-
port the results on the ActivityNet Captions dataset. The best and 5 .
second performance results are highlighted. T fneman
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5 2.43 8.57 33.63 6.13 56.14 Figure 1. Distribution of Event center position. We present the
6 2.24 8.39 33.34 6.35 55.79 statistics of the probability of different event center positions from
ActivityNet Captions and YouCook2 datasets. The horizontal and
7 2.19 8.38 3241 6.02 5543 vertical axes represent the normalized center position and event

improvements compared to the baseline without any cluster-
ing algorithm. It shows that our EZDVC can be well adapted
to different clustering algorithms, which proves the effec-
tiveness and robustness of our method. Among the three
clustering algorithms, the hierarchical agglomerative clus-
tering method outperforms DBSCAN and KMeans. This
can probably be attributed to the nature of hierarchical ag-
glomerative clustering, which does not assume any partic-
ular shape or sizes of the cluster. Sometimes some video
frames do not belong to any an arbitrary event, they should
be regarded as noisy points or outliers. Although DBSCAN
is designed to identify and handle outliers, it’s tricky to tune
the ideal parameters (eps and minPts). Meanwhile, KMeans
is best suited for spherical clusters and struggle to handle ir-
regular or noisy clusters well. These constraints may limit
the flexibility of DBSCAN and KMeans.

Parameter Analysis on the Number of Clusters N. on

probability. It’s obvious that the center timestamps of the video
has the highest Event Probability in all these datasets.

Anet Dataset. In this section, we try different numbers of
clusters N, on the ActivityNet Captions dataset. We present
the results in Table 3. The Event Threshold 7 is set to 4.
The first row is the result from the baseline. As can be
seen from the Table, when N, is set to 1, the performance
is a little higher than the baseline. This is because in this
case all video frames are clustered together and the model
will add an additional query to focus on the middle of the
video. Luckily, as shown in Figure I, the middle of the
video has the highest probability of an event happening. As
the cluster number increases, video frames will be clustered
into more categories based on visual differences. The best
performance appears when N, is set to 5. If N, continues
to grow, the performance drops because the model’s atten-



Table 4. Ablation on varying temporal event threshold 7. We
report the results on the ActivityNet Captions dataset. The best
and the second performance results are highlighted.

7 | BLEU4t METEOR{ CIDErf SODA_ct Flf

Table 6. Evaluation on uneven samples. The experiments are
conducted on the ActivityNet Captions Dataset. We separate all
events into four different groups with their durations and compare
our method with the baseline on all these groups.

Method | Duration | B4 M C F1
B 0-10 1.44 774 30.54 52.14
S 221 8.06 29.97 592 5478 Base | 10-20s 167 7385 3091 5431
Base 20-30s 1.87 8.00 31.09 55.34
0 2.18 835 32.58 6.25 55.05 Base >30s 2.24 8.34 32.63 56.34
E?DVC | 0-10s 1.66,153%  8.12u9% 328560  53.91.34%
1 2.29 8.59 31.26 6.01 53.47 E2DVC | 10-20s 1.75::;; 8~17+:91‘;) 32.92+;66‘; 55~41+;40‘;)
E’DVC | 20-30s | 2.08. 1120 8.19404% 331,650 56.31.1.79
2 2.43 8.64 32.43 6.00 54.19 E2DVC | >30s 25511};2? 8.451?;; 33.671:2; 56.433_;2
3 2.49 8.62 34.07 6.29 55.53
4 243 8.57 33.63 6.13 36.14 of decoder queries is set to 10 on ActivityNet Captions in
5 2.43 8.48 32.82 6.26 55.88 our baseline. However, in EPM, this decoder query num-
6 231 841 32.06 6.24 56.16 ber is decided by the number of pseudo-events. We observe
that when IV is set to 5 and 7 is set to 4, the average num-
7 2.29 8.40 31.75 6.15 55.37 ber of decoder queries equals to 16, which is bigger than

Table 5. Ablation on decoder queries. The experiments are con-
ducted on the ActivityNet Captions Dataset. The "Baseline" is the
result of our baseline with the number of queries set to 10. "Ran-
dom" is the result of setting the number of queries the same as our
PEI module but all queries are randomly initialized. "PEI" is the
result with only the PEI module implemented. "E*DVC" is the
result from our model.

Method | BLEU4? METEORt CIDErf SODA_ct  FIt

Baseline 2.21 8.06 29.97 5.92 54.78
Random 222 8.29 29.24 5.48 54.96

PEI 2.36 8.40 32.41 6.09 55.57
E’DVC 243 8.57 33.63 6.13 56.14

tion is distracted and the real events may be neglected. This
aligns with the experiments on the YouCook?2 dataset in the
main paper.

Parameter Analysis on the Event Threshold 7 on Anet
Dataset. This parameter decides the lower bound of
pseudo-events duration. It’s utilized to detect and discard
isolated frames which could be outliers. The results are
shown in Table 4. The first row presents the result of our
baseline. All performance is better than the baseline in this
table. However, when 7 is too small, the performance is not
better than the baseline by a large margin. That’s because
even isolated frames are allocated certain decoder queries
to focus on. This will distract the model’s attention and
make the real events being overlooked. The best perfor-
mance is achieved when 7 is set to 2-5. When 7 continues
to grow, the performance will decrease because more and
more possible events are discarded. Finally, the result will
be degraded to be the same as the baseline. Ablation Ex-
periments on Decoder Queries. In this part, we conducted
an ablation experiment on the decoder queries. The number

10. Therefore, to investigate whether the performance im-
provement is brought by the increased parameter count from
adding decoder queries or genuinely driven by our proposed
Pseudo-Event Initialization, we conducted comparative ex-
periments by setting the query number to 16 in the base-
line. The experimental results are shown in Table 5. From
the table, we can observe that simply adding the number
of decoder queries ("Random") is worse than our PEI mod-
ule. Actually, the result from "Random" is only compara-
ble with the "Baseline" but with increased computational
cost. This proves that the performance improvement in our
method is not only brought by the increased weight num-
ber. Our visual clustering method can provide convincing
pseudo-events to the decoder and help the model focus on
important locations.

2.2. Evaluation on uneven samples.

In this section, we split all events into four groups accord-
ing to their durations and compare our method with the
baseline on these groups to further validate the effective-
ness of the model. We present the results on the Activ-
ityNet Captions Dataset in Table 6. From the table, we
can make two observations: 1) Short events are more dif-
ficult to caption than long ones. 2) The smaller the dura-
tion of events, the greater performance increase is achieved
by our model. This demonstrates that by assigning equal
attention to all events, our model will not overlook short
ones, thereby achieving better localization and captioning
for short events and thus improving overall performance.

2.3. More Qualitative Results.

In this section, we visualize two more examples on the Ac-
tivityNet Captions dataset. The results are shown in Fig-
ure 2. As can be seen from the Figure, our result aligns
with the ground truth with high localization accuracy and



Input Frames

Ground Truth | 0~11.98: a man is shown throwing darts at a target. | I 12.61-17.88: The darts are all lined upina l
neat row of three.

E2DVC (Ours) | [|"  13.88~17.87 The dart board is shown. |

0~12.78: a man is standing in a room and throws the dart at the board.

Input Frames [

Ground Truth | 0-3.48: A man is standing on | 3.48~9.39: He sprints down the track and jumps into a ["9.5~21.11: A slow motion replay |
a track. sand pile. is shown of him jumping
E?DVC (Ours) | 0~2.55: a man is standing I 3.25~9.49: The man runs down the track and jumps into the " 0.49-21.05: The man runs and |
on a track. sand. jump into the sand pit.

Figure 2. Example visualizations of dense event captioning prediction. The color of the image border represents the category of the
pseudo-event. From top to down, we show the results from the ground truth and our method.

captioning performance.
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