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A.1. Proof of Approximation 4

We believe that BRECQ uses the gradient of KL divergence
instead of the task loss gradient is based on the following
theorem:

Theorem A.1. When the model’s output distribution
matches the true data distribution, the Hessian matrix of
the KL divergence after a small perturbation of the model is
exactly equal to the expectation of the Hessian matrix of the
model’s likelihood function.

Proof. The Hessian matrix of the model’s likelihood func-
tion is defined as:

H(θ) ≜
∂2

∂θ2
log f(X; θ). (22)

As mentioned in theorem 3.1, when the assumption that the
model’s output distribution matches the true data distribution
is satisfied, the expectation of the Hessian matrix is equal to
the negative Fisher Information Matrix.

We use the integral form of the KL divergence to derive
the KL divergence after a small perturbation of the model.
Assume the output distribution of the model is p(x) =
f(x; θ), the output after perturbation is q(x) = f(x; θ′),
where θ′ is a small perturbation w.r.t θ:

DKL(p∥q) =
∫
R
f(x; θ) log

f(x; θ)

f(x; θ′)
dx. (23)

Therefore, the Hessian matrix of KL divergence can be writ-
ten as:

∂2

∂θ′i∂θ
′
j

DKL(p∥q) = −
∫
R
f(x; θ)

(
∂2 log f(x; θ′)

∂θ′i∂θ
′
j

)
dx.

(24)

It can be seen that when f(x; θ) matches the true data distri-
bution, it can be regarded as the probability density function
of the true data distribution. Thus, the Hessian matrix of
KL divergence is equal to the expectation of the Hessian
matrix of the log-likelihood of f(x, θ′). When θ and θ′ are
sufficiently close, the Hessian matrix of the KL divergence
is the expectation of the Hessian matrix of the model’s log-
likelihood function.

A.2. Proof of Theorem 3.1

To prove Theorem 3.1, we begin with the definition of the
score function and another theorem:

Definition 1. The Fisher Information Matrix is defined as
the variance of the score function, where the score function
is the gradient of the log-likelihood function.

Theorem A.2. When the model’s output distribution
matches the true distribution, the expected value of the score
function becomes 0.

Proof. According to the definition of the score function, we
have:

E
[

∂

∂θ
log f(X; θ)

∣∣∣∣ θ] = ∫
R

∂
∂θf(x; θ)

f(x; θ)
f(x; θ)dx

=
∂

∂θ

∫
R
f(x; θ)dx

=
∂

∂θ
1

= 0,

(25)

where the likelihood function f(X; θ) denotes the proba-
bility of the model output random variable X , and f(x; θ)
denotes the probability density of X taking the value x. This
equation holds if and only if the output distribution matches
the true distribution, allowing the use of f(x; θ) as the prob-
ability density function for integration.

Then, we can prove Theorem 3.1:

Proof. Based on the definition of the Fisher Information
Matrix and the definition of variance D(X) = E(X2) −
E2(X), when the expected gradient of the log-likelihood is
0, we have:

F(θ) = D
[

∂

∂θ
log f(X; θ)

∣∣∣∣ θ] = E

[(
∂

∂θ
log f(X; θ)

)2
∣∣∣∣∣θ
]
.

(26)
The second derivative of the log-likelihood function with
respect to the parameters (i.e., the Hessian matrix) is:

∂2

∂θ2
log f(X; θ) =

∂

∂θ

∂
∂θf(X; θ)

f(X; θ)

=

(
∂2

∂θ2 f(X; θ)
)
· f(X; θ)−

(
∂
∂θf(X; θ)

)2
f(X; θ)2

=
∂2

∂θ2 f(X; θ)

f(X; θ)
−

(
∂
∂θf(X; θ)

f(X; θ)

)2

=
∂2

∂θ2 f(X; θ)

f(X; θ)
−
(

∂

∂θ
log f(X; θ)

)2

,

(27)



where the second term is the definition of FIM, and the
expectation of the first term is 0:

E

[
∂2

∂θ2 f(X; θ)

f(X; θ)

∣∣∣∣∣ θ
]
=

∫
R

∂2

∂θ2 f(x; θ)

f(x; θ)
f(x; θ)dx

=
∂2

∂θ2

∫
R
f(x; θ)dx = 0.

(28)

Therefore, when the model’s output distribution matches the
true distribution, the Fisher Information Matrix is equivalent
to the expectation of the negative second derivative of the
log-likelihood function, i.e., the expectation of the Hessian
matrix of the negative log-likelihood function.

A.3. Proof of Theorem 3.2

Proof. In the context of block-wise post-training quanti-
zation, we regard the KL divergence as a function of the
perturbation to the block output:

LKL(∆z(b)) = DKL(p(x; z
(b))∥p(x; z(b) +∆z(b)))

=

∫
R
p(x; z(b)) log

p(x; z(b))

p(x; z(b) +∆z(b))

=

∫
R
p(x; z(b)) log p(x; z(b))

−
∫
R
p(x; z(b)) log p(x; z(b) +∆z(b)).

(29)

We perform a second order Taylor expansion to
log p(x; z(b) +∆z(b)) as below:

log p(x; z(b) +∆z(b))

= log p(x; z(b)) +∇z(b) log p(x; z(b))⊤∆z(b)

+
1

2
∆z(b)⊤∇2

z(b) log p(x; z
(b))∆z(b)

(30)

Thus, we have

LKL(∆z(b)) = −∆z(b)⊤ ·S1−
1

2
∆z(b)⊤ ·S2 ·∆z(b), (31)

where

S1 =

∫
R
p(x; z(b))∇z(b) log p(x; z(b))

S2 =

∫
R
p(x; z(b))∇2

z(b) log p(x; z
(b)).

(32)

According to the properties of logarithmic function dif-
ferentiation, we can deduce the following:

∇z(b)p(x; z(b)) = p(x; z(b))∇z(b) log p(x; z(b)). (33)

Thus,

S1 =

∫
R
p(x; z(b))∇z(b) log p(x; z(b))

=

∫
R
∇z(b)p(x; z(b))

= ∇z(b)

∫
R
p(x; z(b))

= ∇z(b)1

= 0.

(34)

For S2, according to Eq. (33), the following equations hold:

∇2
z(b)p(x; z

(b))

= ∇z(b)(p(x; z(b))∇z(b) log p(x; z(b)))

= ∇z(b)p(x; z(b))∇z(b) log p(x; z(b))⊤

+ p(x; z(b))∇2
z(b) log p(x; z

(b))

= p(x; z(b))∇z(b) log p(x; z(b))∇z(b) log p(x; z(b))⊤

+ p(x; z(b))∇2
z(b) log p(x; z

(b)).

(35)

Therefore, S2 can be written as

S2 =

∫
R
p(x; z(b))∇2

z(b) log p(x; z
(b))

=

∫
R
∇2

z(b)p(x; z
(b))

−
∫
R
p(x; z(b))∇z(b) log p(x; z(b))∇z(b) log p(x; z(b))⊤.

(36)

According to the Leibniz’rule, we can derive that∫
R
∇2

z(b)p(x; z
(b)) = ∇2

z(b)

∫
R
p(x; z(b))

= ∇2
z(b)1

= 0.

(37)

Thus,

S2 = −
∫
R
p(x; z(b))∇z(b) log p(x; z(b))∇z(b) log p(x; z(b))⊤

= −F(z(b)).

(38)

By substituting S1 and S2 into Eq. (31), we have:

LKL(∆z(b)) =
1

2
∆z(b)⊤F(z(b))∆z(b). (39)



A.4. Derivation of Eq. (15)

Given:

F(z(b)) = uu⊤, (40)

∇LKL(∆z(b)) = F(z(b))∆z(b), (41)

where u,∇LKL(∆z(b)),∆z(b) ∈ Ra×1. We define a scalar
α = u⊤ ·∆z(b) such that

∇LKL(∆z(b)) = αu. (42)

Then, we can deduce the below

u⊤ =

(
∇LKL(∆z(b))

)⊤
α

. (43)

Thus,

α =
√
∇LKL(∆z(b),⊤)∆z(b), (44)

u =
∇LKL(∆z(b))√

∇LKL(∆z(b),⊤)∆z(b)
. (45)

A.5. Proof of Corollary 3.1

Proof. Given

F(z(b)) = uu⊤, (46)

∇LKL(∆z(b)) = F(z(b))∆z(b), (47)

we can deduce the following

∆z(b)⊤∇LKL(∆z(b)) = ∆z(b)⊤uu⊤∆z(b). (48)

Since the right-hand side of Eq. (48) is a symmetric matrix,
the left-hand side should also be symmetric:

∆z(b)⊤∇LKL(∆z(b)) =
(
∇LKL(∆z(b))

)⊤
∆z(b). (49)

When k = 1, both sides of Eq. (49) are scalars, implying
that Eq. (49) naturally holds. When k > 1, since ∆z(b) and
LKL(∆z(b)) are not directly related, we cannot guarantee
their symmetry.

As a consequence, it is difficult to find a u such that
F(z(b)) = uu⊤ satisfying Eq. (10) in most cases.

B. More Experiments
As both FIM approximation (FIMA) and reconstruction steps
depend on calibration data, we separately evaluate their per-
formance utilizing different number of samples. As shown in
Table A, the accuracy using FIMA increases as sample size
grows, but is generally robust to the sample size. However,
the reconstruction step is more sensitive to the number of
calibration samples.

Table A. Ablation results (%) w.r.t. the samples size with W3/A3
on ImageNet.

Sample Size In FIMA Step In Reconstruction Step

ViT-S DeiT-S Swin-S ViT-S DeiT-S Swin-S

128 63.52 68.99 77.10 49.64 64.12 71.71
256 63.18 69.10 77.00 56.02 66.21 74.12
512 63.61 69.14 77.18 60.45 67.87 75.8

1024 64.09 69.13 77.26 64.09 69.13 77.26

Since the Fisher Information Matrix (FIM) captures
global information, its computation involves averaging over
the sample dimension. Theoretically, a larger sample size
leads to a more accurate approximation due to reduced sam-
pling error. However, since the averaging process mitigates
the impact of individual sample variations, the difference
is not particularly significant. In fact, even using a single
sample for approximation can still yield an acceptable level
of accuracy. However, as shown in Tab. A, directly altering
the overall sample size leads to a more substantial accuracy
change, as the reconstruction process in Adaround is more
sensitive to the number of samples.
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